Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2
    Pymm, P ; Redmond, SJ ; Dolezal, O ; Mordant, F ; Lopez, E ; Cooney, JP ; Davidson, KC ; Haycroft, ER ; Tan, CW ; Seneviratna, R ; Grimley, SL ; Purcell, DFJ ; Kent, SJ ; Wheatley, AK ; Wang, L-F ; Leis, A ; Glukhova, A ; Pellegrini, M ; Chung, AW ; Subbarao, K ; Uldrich, AP ; Tham, W-H ; Godfrey, DI ; Gherardin, NA (CELL PRESS, 2022-11-18)
    The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
  • Item
    Thumbnail Image
    CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells
    Souter, MNT ; Awad, W ; Li, S ; Pediongco, T ; Meehan, BS ; Meehan, LJ ; Tian, Z ; Zhao, Z ; Wang, H ; Nelson, A ; Le Nours, J ; Khandokar, Y ; Praveena, T ; Wubben, J ; Lin, J ; Sullivan, LC ; Lovrecz, G ; Mak, JYW ; Liu, L ; Kostenko, L ; Kedzierska, K ; Corbett, AJ ; Fairlie, DP ; Brooks, AG ; Gherardin, NA ; Uldrich, AP ; Chen, Z ; Rossjohn, J ; Godfrey, DI ; MCCLUSKEY, J ; Pellicci, DG ; Eckle, SBG (Rockefeller University Press, 2022)
    Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
  • Item
    No Preview Available
    CD36 family members are TCR-independent ligands for CD1 antigen-presenting molecules.
    Gherardin, NA ; Redmond, SJ ; McWilliam, HEG ; Almeida, CF ; Gourley, KHA ; Seneviratna, R ; Li, S ; De Rose, R ; Ross, FJ ; Nguyen-Robertson, CV ; Su, S ; Ritchie, ME ; Villadangos, JA ; Moody, DB ; Pellicci, DG ; Uldrich, AP ; Godfrey, DI (American Association for the Advancement of Science, 2021-06-25)
    CD1c presents lipid-based antigens to CD1c-restricted T cells, which are thought to be a major component of the human T cell pool. However, the study of CD1c-restricted T cells is hampered by the presence of an abundantly expressed, non-T cell receptor (TCR) ligand for CD1c on blood cells, confounding analysis of TCR-mediated CD1c tetramer staining. Here, we identified the CD36 family (CD36, SR-B1, and LIMP-2) as ligands for CD1c, CD1b, and CD1d proteins and showed that CD36 is the receptor responsible for non-TCR-mediated CD1c tetramer staining of blood cells. Moreover, CD36 blockade clarified tetramer-based identification of CD1c-restricted T cells and improved identification of CD1b- and CD1d-restricted T cells. We used this technique to characterize CD1c-restricted T cells ex vivo and showed diverse phenotypic features, TCR repertoire, and antigen-specific subsets. Accordingly, this work will enable further studies into the biology of CD1 and human CD1-restricted T cells.
  • Item
    Thumbnail Image
    Butyrophilin 2A1 is essential for phosphoantigen reactivity by gamma delta T cells
    Rigau, M ; Ostrouska, S ; Fulford, TS ; Johnson, DN ; Woods, K ; Ruan, Z ; McWilliam, HEG ; Hudson, C ; Tutuka, C ; Wheatley, AK ; Kent, SJ ; Villadangos, JA ; Pal, B ; Kurts, C ; Simmonds, J ; Pelzing, M ; Nash, AD ; Hammet, A ; Verhagen, AM ; Vairo, G ; Maraskovsky, E ; Panousis, C ; Gherardin, NA ; Cebon, J ; Godfrey, DI ; Behren, A ; Uldrich, AP (American Association for the Advancement of Science, 2020-02-07)
    Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.
  • Item
    Thumbnail Image
    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells
    Reantragoon, R ; Corbett, AJ ; Sakala, IG ; Gherardin, NA ; Furness, JB ; Chen, Z ; Eckle, SBG ; Uldrich, AP ; Birkinshaw, RW ; Patel, O ; Kostenko, L ; Meehan, B ; Kedzierska, K ; Liu, L ; Fairlie, DP ; Hansen, TH ; Godfrey, DI ; Rossjohn, J ; McCluskey, J ; Kjer-Nielsen, L (ROCKEFELLER UNIV PRESS, 2013-10-21)
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH₂OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8α(+)CD8β(-/lo), implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH₂OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.
  • Item
    Thumbnail Image
    Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens
    Le Nours, J ; Praveena, T ; Pellicci, DG ; Gherardin, NA ; Ross, FJ ; Lim, RT ; Besra, GS ; Keshipeddy, S ; Richardson, SK ; Howell, AR ; Gras, S ; Godfrey, DI ; Rossjohn, J ; Uldrich, AP (NATURE PUBLISHING GROUP, 2016-02)
    Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d-α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1(+) type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7-8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A'-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d-α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition.
  • Item
    Thumbnail Image
    Human blood MAIT cell subsets defined using MR1 tetramers
    Gherardin, NA ; Souter, MNT ; Koay, H-F ; Mangas, KM ; Seemann, T ; Stinear, TP ; Eckle, SBG ; Berzins, SP ; d'Udekem, Y ; Konstantinov, IE ; Fairlie, DP ; Ritchie, DS ; Neeson, PJ ; Pellicci, DG ; Uldrich, AP ; McCluskey, J ; Godfrey, DI (WILEY, 2018-05)
    Mucosal-associated invariant T (MAIT) cells represent up to 10% of circulating human T cells. They are usually defined using combinations of non-lineage-specific (surrogate) markers such as anti-TRAV1-2, CD161, IL-18Rα and CD26. The development of MR1-Ag tetramers now permits the specific identification of MAIT cells based on T-cell receptor specificity. Here, we compare these approaches for identifying MAIT cells and show that surrogate markers are not always accurate in identifying these cells, particularly the CD4+ fraction. Moreover, while all MAIT cell subsets produced comparable levels of IFNγ, TNF and IL-17A, the CD4+ population produced more IL-2 than the other subsets. In a human ontogeny study, we show that the frequencies of most MR1 tetramer+ MAIT cells, with the exception of CD4+ MAIT cells, increased from birth to about 25 years of age and declined thereafter. We also demonstrate a positive association between the frequency of MAIT cells and other unconventional T cells including Natural Killer T (NKT) cells and Vδ2+ γδ T cells. Accordingly, this study demonstrates that MAIT cells are phenotypically and functionally diverse, that surrogate markers may not reliably identify all of these cells, and that their numbers are regulated in an age-dependent manner and correlate with NKT and Vδ2+ γδ T cells.
  • Item
    Thumbnail Image
    Diverse MR1-restricted T cells in mice and humans.
    Koay, H-F ; Gherardin, NA ; Xu, C ; Seneviratna, R ; Zhao, Z ; Chen, Z ; Fairlie, DP ; McCluskey, J ; Pellicci, DG ; Uldrich, AP ; Godfrey, DI (Nature Research (part of Springer Nature), 2019-05-21)
    Mucosal-associated invariant T (MAIT) cells express an invariant TRAV1/TRAJ33 TCR-α chain and are restricted to the MHC-I-like molecule, MR1. Whether MAIT cell development depends on this invariant TCR-α chain is unclear. Here we generate Traj33-deficient mice and show that they are highly depleted of MAIT cells; however, a residual population remains and can respond to exogenous antigen in vitro or pulmonary Legionella challenge in vivo. These residual cells include some that express Trav1+ TCRs with conservative Traj-gene substitutions, and others that express Trav1- TCRs with a broad range of Traj genes. We further report that human TRAV1-2- MR1-restricted T cells contain both MAIT-like and non-MAIT-like cells, as judged by their TCR repertoire, antigen reactivity and phenotypic features. These include a MAIT-like population that expresses a public, canonical TRAV36+ TRBV28+ TCR. Our findings highlight the TCR diversity and the resulting potential impact on antigen recognition by MR1-restricted T cells.
  • Item
    No Preview Available
    A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage
    Koay, H-F ; Gherardin, NA ; Enders, A ; Loh, L ; Mackay, LK ; Almeida, CF ; Russ, BE ; Nold-Petry, CA ; Nold, MF ; Bedoui, S ; Chen, Z ; Corbett, AJ ; Eckle, SBG ; Meehan, B ; d'Udekem, Y ; Konstantinov, IE ; Lappas, M ; Liu, L ; Goodnow, CC ; Fairlie, DP ; Rossjohn, J ; Chong, MM ; Kedzierska, K ; Berzins, SP ; Belz, GT ; McCluskey, J ; Uldrich, AP ; Godfrey, DI ; Pellicci, DG (NATURE PUBLISHING GROUP, 2016-11)
    Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
  • Item
    Thumbnail Image
    Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma
    Gherardin, NA ; Loh, L ; Admojo, L ; Davenport, AJ ; Richardson, K ; Rogers, A ; Darcy, PK ; Jenkins, MR ; Prince, HM ; Harrison, SJ ; Quach, H ; Fairlie, DP ; Kedzierska, K ; McCluskey, J ; Uldrich, AP ; Neeson, PJ ; Ritchie, DS ; Godfrey, DI (NATURE PORTFOLIO, 2018-03-07)
    Mucosal-associated invariant T (MAIT) cells are T cells that recognise vitamin-B derivative Ag presented by the MHC-related-protein 1 (MR1) antigen-presenting molecule. While MAIT cells are highly abundant in humans, their role in tumour immunity remains unknown. Here we have analysed the frequency and function of MAIT cells in multiple myeloma (MM) patients. We show that MAIT cell frequency in blood is reduced compared to healthy adult donors, but comparable to elderly healthy control donors. Furthermore, there was no evidence that MAIT cells accumulated at the disease site (bone marrow) of these patients. Newly diagnosed MM patient MAIT cells had reduced IFNγ production and CD27 expression, suggesting an exhausted phenotype, although IFNγ-producing capacity is restored in relapsed/refractory patient samples. Moreover, immunomodulatory drugs Lenalidomide and Pomalidomide, indirectly inhibited MAIT cell activation. We further show that cell lines can be pulsed with vitamin-B derivative Ags and that these can be presented via MR1 to MAIT cells in vitro, to induce cytotoxic activity comparable to that of natural killer (NK) cells. Thus, MAIT cells are reduced in MM patients, which may contribute to disease in these individuals, and moreover, MAIT cells may represent new immunotherapeutic targets for treatment of MM and other malignancies.