Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Differential antigen requirements by diverse MR1-restricted T cells (vol 100, pg 112, 2022)
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-03)
  • Item
    Thumbnail Image
    CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells
    Souter, MNT ; Awad, W ; Li, S ; Pediongco, T ; Meehan, BS ; Meehan, LJ ; Tian, Z ; Zhao, Z ; Wang, H ; Nelson, A ; Le Nours, J ; Khandokar, Y ; Praveena, T ; Wubben, J ; Lin, J ; Sullivan, LC ; Lovrecz, G ; Mak, JYW ; Liu, L ; Kostenko, L ; Kedzierska, K ; Corbett, AJ ; Fairlie, DP ; Brooks, AG ; Gherardin, NA ; Uldrich, AP ; Chen, Z ; Rossjohn, J ; Godfrey, DI ; MCCLUSKEY, J ; Pellicci, DG ; Eckle, SBG (Rockefeller University Press, 2022)
    Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Abrignani, S ; Addo, R ; Akdis, M ; Andrae, I ; Andreata, F ; Annunziato, F ; Arranz, E ; Bacher, P ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Baumjohann, D ; Beccaria, CG ; Bernardo, D ; Boardman, DA ; Borger, J ; Boettcher, C ; Brockmann, L ; Burns, M ; Busch, DH ; Cameron, G ; Cammarata, I ; Cassotta, A ; Chang, Y ; Chirdo, FG ; Christakou, E ; Cicin-Sain, L ; Cook, L ; Corbett, AJ ; Cornelis, R ; Cosmi, L ; Davey, MS ; De Biasi, S ; De Simone, G ; del Zotto, G ; Delacher, M ; Di Rosa, F ; Di Santo, J ; Diefenbach, A ; Dong, J ; Doerner, T ; Dress, RJ ; Dutertre, C-A ; Eckle, SBG ; Eede, P ; Evrard, M ; Falk, CS ; Feuerer, M ; Fillatreau, S ; Fiz-Lopez, A ; Follo, M ; Foulds, GA ; Froebel, J ; Gagliani, N ; Galletti, G ; Gangaev, A ; Garbi, N ; Garrote, JA ; Geginat, J ; Gherardin, NA ; Gibellini, L ; Ginhoux, F ; Godfrey, DI ; Gruarin, P ; Haftmann, C ; Hansmann, L ; Harpur, CM ; Hayday, AC ; Heine, G ; Hernandez, DC ; Herrmann, M ; Hoelsken, O ; Huang, Q ; Huber, S ; Huber, JE ; Huehn, J ; Hundemer, M ; Hwang, WYK ; Iannacone, M ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Keller, B ; Kessler, N ; Ketelaars, S ; Knop, L ; Knopf, J ; Koay, H-F ; Kobow, K ; Kriegsmann, K ; Kristyanto, H ; Krueger, A ; Kuehne, JF ; Kunze-Schumacher, H ; Kvistborg, P ; Kwok, I ; Latorre, D ; Lenz, D ; Levings, MK ; Lino, AC ; Liotta, F ; Long, HM ; Lugli, E ; MacDonald, KN ; Maggi, L ; Maini, MK ; Mair, F ; Manta, C ; Manz, RA ; Mashreghi, M-F ; Mazzoni, A ; McCluskey, J ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Monin, L ; Moretta, L ; Multhoff, G ; Munoz, LE ; Munoz-Ruiz, M ; Muscate, F ; Natalini, A ; Neumann, K ; Ng, LG ; Niedobitek, A ; Niemz, J ; Almeida, LN ; Notarbartolo, S ; Ostendorf, L ; Pallett, LJ ; Patel, AA ; Percin, GI ; Peruzzi, G ; Pinti, M ; Pockley, AG ; Pracht, K ; Prinz, I ; Pujol-Autonell, I ; Pulvirenti, N ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Rhys, H ; Rodrigo, MB ; Romagnani, C ; Saggau, C ; Sakaguchi, S ; Sallusto, F ; Sanderink, L ; Sandrock, I ; Schauer, C ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schober, K ; Schoen, J ; Schuh, W ; Schueler, T ; Schulz, AR ; Schulz, S ; Schulze, J ; Simonetti, S ; Singh, J ; Sitnik, KM ; Stark, R ; Starossom, S ; Stehle, C ; Szelinski, F ; Tan, L ; Tarnok, A ; Tornack, J ; Tree, TIM ; van Beek, JJP ; van de Veen, W ; van Gisbergen, K ; Vasco, C ; Verheyden, NA ; von Borstel, A ; Ward-Hartstonge, KA ; Warnatz, K ; Waskow, C ; Wiedemann, A ; Wilharm, A ; Wing, J ; Wirz, O ; Wittner, J ; Yang, JHM ; Yang, J (WILEY, 2021-12)
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
  • Item
    Thumbnail Image
    Differential antigenic requirements by diverse MR1-restricted T cells
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-02)
    MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T-cell receptor (TCR), which recognizes MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumor cells and appear to recognize MR1 in association with tumor-derived self-antigens, though the identity of these antigens remains unclear. Here, we have used TCR gene transfer and engineered MR1-expressing antigen-presenting cells to probe the MR1 restriction and antigen reactivity of a range of MR1-restricted TCRs, including model tumor-reactive TCRs. We confirm MR1 reactivity by these TCRs, show differential dependence on lysine at position 43 of MR1 (K43) and demonstrate competitive inhibition by the MR1 ligand 6-formylpterin. TCR-expressing reporter lines, however, failed to recapitulate the robust tumor specificity previously reported, suggesting an importance of accessory molecules for MR1-dependent tumor reactivity. Finally, MR1-mutant cell lines showed that distinct residues on the α1/α2 helices were required for TCR binding by different MR1-restricted T cells and suggested central but distinct docking modes by the broad family of MR1-restricted αβ TCRs. Collectively, these data are consistent with recognition of distinct antigens by diverse MR1-restricted T cells.
  • Item
    Thumbnail Image
    Differential location of NKT and MAIT cells within lymphoid tissue
    Johnson, DN ; Ruan, Z ; Petley, E ; Devi, S ; Holz, LE ; Uldrich, AP ; Mak, JYW ; Hor, JL ; Mueller, SN ; McCluskey, J ; Fairlie, DP ; Darcy, PK ; Beavis, PA ; Heath, WR ; Godfrey, D (NATURE PORTFOLIO, 2022-03-08)
    Natural Killer T (NKT) cells and Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells that express semi-invariant αβ T cell receptors (TCRs) through which they recognise CD1d and MR1 molecules, respectively, in complex with specific ligands. These cells play important roles in health and disease in many organs, but their precise intra-organ location is not well established. Here, using CD1d and MR1 tetramer staining techniques, we describe the precise location of NKT and MAIT cells in lymphoid and peripheral organs. Within the thymus, NKT cells were concentrated in the medullary side of the corticomedullary junction. In spleen and lymph nodes, NKT cells were mainly localised within T cell zones, although following in vivo activation with the potent NKT-cell ligand α-GalCer, they expanded throughout the spleen. MAIT cells were clearly detectable in Vα19 TCR transgenic mice and were rare but detectable in lymphoid tissue of non-transgenic mice. In contrast to NKT cells, MAIT cells were more closely associated with the B cell zone and red pulp of the spleen. Accordingly, we have provided an extensive analysis of the in situ localisation of NKT and MAIT cells and suggest differences between the intra-organ location of these two cell types.
  • Item
    No Preview Available
    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
    Keller, AN ; Eckle, SBG ; Xu, W ; Liu, L ; Hughes, VA ; Mak, JYW ; Meehan, BS ; Pediongco, T ; Birkinshaw, RW ; Chen, Z ; Wang, H ; D'Souza, C ; Kjer-Nielsen, L ; Gherardin, NA ; Godfrey, DI ; Kostenko, L ; Corbett, AJ ; Purcell, AW ; Fairlie, DP ; McCluskey, J ; Rossjohn, J (NATURE PUBLISHING GROUP, 2017-04)
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.
  • Item
    Thumbnail Image
    MAIT cells regulate NK cell-mediated tumor immunity
    Petley, E ; Koay, H-F ; Henderson, MA ; Sek, K ; Todd, KL ; Keam, SP ; Lai, J ; House, IG ; Li, J ; Zethoven, M ; Chen, AXY ; Oliver, AJ ; Michie, J ; Freeman, AJ ; Giuffrida, L ; Chan, JD ; Pizzolla, A ; Mak, JYW ; McCulloch, TR ; Souza-Fonseca-Guimaraes, F ; Kearney, CJ ; Millen, R ; Ramsay, RG ; Huntington, ND ; McCluskey, J ; Oliaro, J ; Fairlie, DP ; Neeson, PJ ; Godfrey, D ; Beavis, PA ; Darcy, PK (NATURE PORTFOLIO, 2021-08-06)
    The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Acs, A ; Adam, D ; Adam-Klages, S ; Agace, WW ; Aghaeepour, N ; Akdis, M ; Allez, M ; Almeida, LN ; Alvisi, G ; Anderson, G ; Andrae, I ; Annunziato, F ; Anselmo, A ; Bacher, P ; Baldari, CT ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Battistini, L ; Bauer, W ; Baumgart, S ; Baumgarth, N ; Baumjohann, D ; Baying, B ; Bebawy, M ; Becher, B ; Beisker, W ; Benes, V ; Beyaert, R ; Blanco, A ; Boardman, DA ; Bogdan, C ; Borger, JG ; Borsellino, G ; Boulais, PE ; Bradford, JA ; Brenner, D ; Brinkman, RR ; Brooks, AES ; Busch, DH ; Buescher, M ; Bushnell, TP ; Calzetti, F ; Cameron, G ; Cammarata, I ; Cao, X ; Cardell, SL ; Casola, S ; Cassatella, MA ; Cavani, A ; Celada, A ; Chatenoud, L ; Chattopadhyay, PK ; Chow, S ; Christakou, E ; Cicin-Sain, L ; Clerici, M ; Colombo, FS ; Cook, L ; Cooke, A ; Cooper, AM ; Corbett, AJ ; Cosma, A ; Cosmi, L ; Coulie, PG ; Cumano, A ; Cvetkovic, L ; Dang, VD ; Dang-Heine, C ; Davey, MS ; Davies, D ; De Biasi, S ; Del Zotto, G ; Dela Cruz, GV ; Delacher, M ; Della Bella, S ; Dellabona, P ; Deniz, G ; Dessing, M ; Di Santo, JP ; Diefenbach, A ; Dieli, F ; Dolf, A ; Doerner, T ; Dress, RJ ; Dudziak, D ; Dustin, M ; Dutertre, C-A ; Ebner, F ; Eckle, SBG ; Edinger, M ; Eede, P ; Ehrhardt, GRA ; Eich, M ; Engel, P ; Engelhardt, B ; Erdei, A ; Esser, C ; Everts, B ; Evrard, M ; Falk, CS ; Fehniger, TA ; Felipo-Benavent, M ; Ferry, H ; Feuerer, M ; Filby, A ; Filkor, K ; Fillatreau, S ; Follo, M ; Foerster, I ; Foster, J ; Foulds, GA ; Frehse, B ; Frenette, PS ; Frischbutter, S ; Fritzsche, W ; Galbraith, DW ; Gangaev, A ; Garbi, N ; Gaudilliere, B ; Gazzinelli, RT ; Geginat, J ; Gerner, W ; Gherardin, NA ; Ghoreschi, K ; Gibellini, L ; Ginhoux, F ; Goda, K ; Godfrey, DI ; Goettlinger, C ; Gonzalez-Navajas, JM ; Goodyear, CS ; Gori, A ; Grogan, JL ; Grummitt, D ; Gruetzkau, A ; Haftmann, C ; Hahn, J ; Hammad, H ; Haemmerling, G ; Hansmann, L ; Hansson, G ; Harpur, CM ; Hartmann, S ; Hauser, A ; Hauser, AE ; Haviland, DL ; Hedley, D ; Hernandez, DC ; Herrera, G ; Herrmann, M ; Hess, C ; Hoefer, T ; Hoffmann, P ; Hogquist, K ; Holland, T ; Hollt, T ; Holmdahl, R ; Hombrink, P ; Houston, JP ; Hoyer, BF ; Huang, B ; Huang, F-P ; Huber, JE ; Huehn, J ; Hundemer, M ; Hunter, CA ; Hwang, WYK ; Iannone, A ; Ingelfinger, F ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Javega, B ; Jonjic, S ; Kaiser, T ; Kalina, T ; Kamradt, T ; Kaufmann, SHE ; Keller, B ; Ketelaars, SLC ; Khalilnezhad, A ; Khan, S ; Kisielow, J ; Klenerman, P ; Knopf, J ; Koay, H-F ; Kobow, K ; Kolls, JK ; Kong, WT ; Kopf, M ; Korn, T ; Kriegsmann, K ; Kristyanto, H ; Kroneis, T ; Krueger, A ; Kuehne, J ; Kukat, C ; Kunkel, D ; Kunze-Schumacher, H ; Kurosaki, T ; Kurts, C ; Kvistborg, P ; Kwok, I ; Landry, J ; Lantz, O ; Lanuti, P ; LaRosa, F ; Lehuen, A ; LeibundGut-Landmann, S ; Leipold, MD ; Leung, LYT ; Levings, MK ; Lino, AC ; Liotta, F ; Litwin, V ; Liu, Y ; Ljunggren, H-G ; Lohoff, M ; Lombardi, G ; Lopez, L ; Lopez-Botet, M ; Lovett-Racke, AE ; Lubberts, E ; Luche, H ; Ludewig, B ; Lugli, E ; Lunemann, S ; Maecker, HT ; Maggi, L ; Maguire, O ; Mair, F ; Mair, KH ; Mantovani, A ; Manz, RA ; Marshall, AJ ; Martinez-Romero, A ; Martrus, G ; Marventano, I ; Maslinski, W ; Matarese, G ; Mattioli, AV ; Maueroder, C ; Mazzoni, A ; McCluskey, J ; McGrath, M ; McGuire, HM ; McInnes, IB ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Miller, SD ; Mills, KHG ; Minderman, H ; Mjosberg, J ; Moore, J ; Moran, B ; Moretta, L ; Mosmann, TR ; Mueller, S ; Multhoff, G ; Munoz, LE ; Munz, C ; Nakayama, T ; Nasi, M ; Neumann, K ; Ng, LG ; Niedobitek, A ; Nourshargh, S ; Nunez, G ; O'Connor, J-E ; Ochel, A ; Oja, A ; Ordonez, D ; Orfao, A ; Orlowski-Oliver, E ; Ouyang, W ; Oxenius, A ; Palankar, R ; Panse, I ; Pattanapanyasat, K ; Paulsen, M ; Pavlinic, D ; Penter, L ; Peterson, P ; Peth, C ; Petriz, J ; Piancone, F ; Pickl, WF ; Piconese, S ; Pinti, M ; Pockley, AG ; Podolska, MJ ; Poon, Z ; Pracht, K ; Prinz, I ; Pucillo, CEM ; Quataert, SA ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Radstake, TRDJ ; Rahmig, S ; Rahn, H-P ; Rajwa, B ; Ravichandran, G ; Raz, Y ; Rebhahn, JA ; Recktenwald, D ; Reimer, D ; Reis e Sousa, C ; Remmerswaal, EBM ; Richter, L ; Rico, LG ; Riddell, A ; Rieger, AM ; Robinson, JP ; Romagnani, C ; Rubartelli, A ; Ruland, J ; Saalmueller, A ; Saeys, Y ; Saito, T ; Sakaguchi, S ; Sala-de-Oyanguren, F ; Samstag, Y ; Sanderson, S ; Sandrock, I ; Santoni, A ; Sanz, RB ; Saresella, M ; Sautes-Fridman, C ; Sawitzki, B ; Schadt, L ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schimisky, E ; Schlitzer, A ; Schlosser, J ; Schmid, S ; Schmitt, S ; Schober, K ; Schraivogel, D ; Schuh, W ; Schueler, T ; Schulte, R ; Schulz, AR ; Schulz, SR ; Scotta, C ; Scott-Algara, D ; Sester, DP ; Shankey, TV ; Silva-Santos, B ; Simon, AK ; Sitnik, KM ; Sozzani, S ; Speiser, DE ; Spidlen, J ; Stahlberg, A ; Stall, AM ; Stanley, N ; Stark, R ; Stehle, C ; Steinmetz, T ; Stockinger, H ; Takahama, Y ; Takeda, K ; Tan, L ; Tarnok, A ; Tiegs, G ; Toldi, G ; Tornack, J ; Traggiai, E ; Trebak, M ; Tree, TIM ; Trotter, J ; Trowsdale, J ; Tsoumakidou, M ; Ulrich, H ; Urbanczyk, S ; van de Veen, W ; van den Broek, M ; van der Pol, E ; Van Gassen, S ; Van Isterdael, G ; van Lier, RAW ; Veldhoen, M ; Vento-Asturias, S ; Vieira, P ; Voehringer, D ; Volk, H-D ; von Borstel, A ; von Volkmann, K ; Waisman, A ; Walker, RV ; Wallace, PK ; Wang, SA ; Wang, XM ; Ward, MD ; Ward-Hartstonge, KA ; Warnatz, K ; Warnes, G ; Warth, S ; Waskow, C ; Watson, JV ; Watzl, C ; Wegener, L ; Weisenburger, T ; Wiedemann, A ; Wienands, J ; Wilharm, A ; Wilkinson, RJ ; Willimsky, G ; Wing, JB ; Winkelmann, R ; Winkler, TH ; Wirz, OF ; Wong, A ; Wurst, P ; Yang, JHM ; Yang, J ; Yazdanbakhsh, M ; Yu, L ; Yue, A ; Zhang, H ; Zhao, Y ; Ziegler, SM ; Zielinski, C ; Zimmermann, J ; Zychlinsky, A (WILEY, 2019-10)
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  • Item
    Thumbnail Image
    An overview on the identification of MAIT cell antigens
    Kjer-Nielsen, L ; Corbett, AJ ; Chen, Z ; Liu, L ; Mak, JYW ; Godfrey, DI ; Rossjohn, J ; Fairlie, DP ; McCluskey, J ; Eckle, SBG (WILEY, 2018-07)
    Mucosal associated invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and small molecule chemistry, we discovered MR1 ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T-cell receptors, and here we recount this discovery.
  • Item
    Thumbnail Image
    Characterization and Purification of Mouse Mucosal-Associated Invariant T (MAIT) Cells
    Chen, Z ; Wang, H ; D'Souza, C ; Koay, H-F ; Meehan, B ; Zhao, Z ; Pediongco, T ; Shi, M ; Zhu, T ; Wang, B ; Kjer-Nielsen, L ; Eckle, SBG ; Rossjohn, J ; Fairlie, DP ; Godfrey, DI ; Strugnell, RA ; McCluskey, J ; Corbett, AJ (John Wiley & Sons, 2019)
    This unit describes the utility of various mouse models of infection and immunization for studying mucosal-associated invariant T (MAIT) cell immunity: MAIT cells can be isolated from the lungs (or from other tissues/organs) and then identified and characterized by flow cytometry using MR1 tetramers in combination with a range of antibodies. The response kinetics, cytokine profiles, and functional differentiation of lung MAIT cells are studied following infection with the bacterial pathogen Legionella longbeachae or Salmonella enterica Typhimurium or immunization with synthetic MAIT cell antigen plus Toll-like receptor agonist. MAIT cells enriched or expanded during the process can be used for further studies. A step-by-step protocol is provided for MAIT cell sorting and adoptive transfer. Mice can then be challenged and MAIT cells tracked and further examined.