Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    No Preview Available
    MAIT and Vδ2 unconventional T cells are supported by a diverse intestinal microbiome and correlate with favorable patient outcome after allogeneic HCT.
    Andrlová, H ; Miltiadous, O ; Kousa, AI ; Dai, A ; DeWolf, S ; Violante, S ; Park, H-Y ; Janaki-Raman, S ; Gardner, R ; El Daker, S ; Slingerland, J ; Giardina, P ; Clurman, A ; Gomes, ALC ; Nguyen, C ; da Silva, MB ; Armijo, GK ; Lee, N ; Zappasodi, R ; Chaligne, R ; Masilionis, I ; Fontana, E ; Ponce, D ; Cho, C ; Bush, A ; Hill, L ; Chao, N ; Sung, AD ; Giralt, S ; Vidal, EH ; Hosszu, KK ; Devlin, SM ; Peled, JU ; Cross, JR ; Perales, M-A ; Godfrey, DI ; van den Brink, MRM ; Markey, KA (American Association for the Advancement of Science (AAAS), 2022-05-25)
    Microbial diversity is associated with improved outcomes in recipients of allogeneic hematopoietic cell transplantation (allo-HCT), but the mechanism underlying this observation is unclear. In a cohort of 174 patients who underwent allo-HCT, we demonstrate that a diverse intestinal microbiome early after allo-HCT is associated with an increased number of innate-like mucosal-associated invariant T (MAIT) cells, which are in turn associated with improved overall survival and less acute graft-versus-host disease (aGVHD). Immune profiling of conventional and unconventional immune cell subsets revealed that the prevalence of Vδ2 cells, the major circulating subpopulation of γδ T cells, closely correlated with the frequency of MAIT cells and was associated with less aGVHD. Analysis of these populations using both single-cell transcriptomics and flow cytometry suggested a shift toward activated phenotypes and a gain of cytotoxic and effector functions after transplantation. A diverse intestinal microbiome with the capacity to produce activating ligands for MAIT and Vδ2 cells appeared to be necessary for the maintenance of these populations after allo-HCT. These data suggest an immunological link between intestinal microbial diversity, microbe-derived ligands, and maintenance of unconventional T cells.
  • Item
    Thumbnail Image
    Differential antigen requirements by diverse MR1-restricted T cells (vol 100, pg 112, 2022)
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-03)
  • Item
    No Preview Available
    Are NKT cells a useful predictor of COVID-19 severity?
    Koay, H-F ; Gherardin, NA ; Nguyen, THO ; Zhang, W ; Habel, JR ; Seneviratna, R ; James, F ; Holmes, NE ; Smibert, OC ; Gordon, CL ; Trubiano, JA ; Kedzierska, K ; Godfrey, DI (CELL PRESS, 2022-02-08)
  • Item
    Thumbnail Image
    Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma
    Davis, SK ; Selva, KJ ; Lopez, E ; Haycroft, ER ; Lee, WS ; Wheatley, AK ; Juno, JA ; Adair, A ; Pymm, P ; Redmond, SJ ; Gherardin, NA ; Godfrey, D ; Tham, W-H ; Kent, SJ ; Chung, AW (WILEY, 2022)
    OBJECTIVES: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. METHODS: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. RESULTS: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. CONCLUSION: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.
  • Item
    Thumbnail Image
    Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2
    Pymm, P ; Redmond, SJ ; Dolezal, O ; Mordant, F ; Lopez, E ; Cooney, JP ; Davidson, KC ; Haycroft, ER ; Tan, CW ; Seneviratna, R ; Grimley, SL ; Purcell, DFJ ; Kent, SJ ; Wheatley, AK ; Wang, L-F ; Leis, A ; Glukhova, A ; Pellegrini, M ; Chung, AW ; Subbarao, K ; Uldrich, AP ; Tham, W-H ; Godfrey, DI ; Gherardin, NA (CELL PRESS, 2022-11-18)
    The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
  • Item
    Thumbnail Image
    Fc engineered ACE2-Fc is a potent multifunctional agent targeting SARS-CoV2
    Wines, BD ; Kurtovic, L ; Trist, HM ; Esparon, S ; Lopez, E ; Chappin, K ; Chan, L-J ; Mordant, FL ; Lee, WS ; Gherardin, NA ; Patel, SK ; Hartley, GE ; Pymm, P ; Cooney, JP ; Beeson, JG ; Godfrey, D ; Burrell, LM ; van Zelm, MC ; Wheatley, AK ; Chung, AW ; Tham, W-H ; Subbarao, K ; Kent, SJ ; Hogarth, PM (FRONTIERS MEDIA SA, 2022-07-28)
    Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.
  • Item
    Thumbnail Image
    A Complementary Union of SARS-CoV2 Natural and Vaccine Induced Immune Responses
    Torresi, J ; Edeling, MA ; Nolan, T ; Godfrey, DI (FRONTIERS MEDIA SA, 2022-07-13)
    Our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination has progressed considerably since the COVID-19 pandemic was first declared on the 11th of March in 2020. Recovery from infection is associated with the development of protective immune responses, although over time these become less effective against new emerging SARS-CoV-2 variants. Consequently, reinfection with SARS-CoV-2 variants is not infrequent and has contributed to the ongoing pandemic. COVID-19 vaccines have had a tremendous impact on reducing infection and particularly the number of deaths associated with SARS-CoV-2 infection. However, waning of vaccine induced immunity plus the emergence of new variants has necessitated the use of boosters to maintain the benefits of vaccination in reducing COVID-19 associated deaths. Boosting is also beneficial for individuals who have recovered from COVID-19 and developed natural immunity, also enhancing responses immune responses to SARS-CoV-2 variants. This review summarizes our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination, the risks of reinfection with emerging variants and the very important protective role vaccine boosting plays in both vaccinated and previously infected individuals.
  • Item
    Thumbnail Image
    The NKT cell TCR repertoire can accommodate structural modifications to the lipid and orientation of the terminal carbohydrate of iGb3
    Cameron, G ; Cheng, JMH ; Godfrey, DI ; Timmer, MSM ; Stocker, BL ; Dangerfield, EM (ROYAL SOC CHEMISTRY, 2022-06-22)
    Isoglobotrihexosylceramide (iGb3) is a known NKT cell agonist, however the specific interactions required to trigger NKT cell TCR activation in response to this mammalian glycolipid are not fully understood. Here we report the synthesis of 1,3-β-Gal-LacCer (βG-iGb3) that displays a β-linked terminal sugar. βG-iGb3 activated NKT cells to a similar extent as iGb3 with a terminal α-linkage, indicating that the conformation of the terminal sugar residue of iGb3 is not essential to facilitate NKT cell TCR recognition. In addition, the immunological activity of four recently described iGb3 analogues with modifications to their terminal sugar or lipid backbone were also investigated. These iGb3 analogues all induced NKT cell proliferation, with IL-13 the predominate cytokine detected. This highlights the ability of the NKT cell TCR to accommodate variations in iGb3-based glycolipids and suggests that undiscovered NKT cell ligands may exist within the lacto-series of mammalian glycosphingolipids.
  • Item
    Thumbnail Image
    CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells
    Souter, MNT ; Awad, W ; Li, S ; Pediongco, T ; Meehan, BS ; Meehan, LJ ; Tian, Z ; Zhao, Z ; Wang, H ; Nelson, A ; Le Nours, J ; Khandokar, Y ; Praveena, T ; Wubben, J ; Lin, J ; Sullivan, LC ; Lovrecz, G ; Mak, JYW ; Liu, L ; Kostenko, L ; Kedzierska, K ; Corbett, AJ ; Fairlie, DP ; Brooks, AG ; Gherardin, NA ; Uldrich, AP ; Chen, Z ; Rossjohn, J ; Godfrey, DI ; MCCLUSKEY, J ; Pellicci, DG ; Eckle, SBG (Rockefeller University Press, 2022)
    Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
  • Item
    Thumbnail Image
    Intratumoural administration of an NKT cell agonist with CpG promotes NKT cell infiltration associated with an enhanced antitumour response and abscopal effect
    Prasit, KK ; Ferrer-Font, L ; Burn, OK ; Anderson, RJ ; Compton, BJ ; Schmidt, AJ ; Mayer, JU ; Chen, C-JJ ; Dasyam, N ; Ritchie, DS ; Godfrey, D ; Mattarollo, SR ; Rod Dundar, P ; Painter, GF ; Hermans, IF (TAYLOR & FRANCIS INC, 2022-12-31)
    Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8+ T cells. An antitumour effect on distant untreated tumours (abscopal effect) was reliant on sustained activity of NKT cells and was associated with infiltration of KLRG1+ NKT cells in tumours and draining lymph nodes at both injected and untreated distant sites. Cytometric analysis pointed to increased exposure to type I interferon (IFN) affecting many immune cell types in the tumour and lymphoid organs. Accordingly, antitumour activity was lost in animals in which dendritic cells (DCs) were incapable of signaling through the type I IFN receptor. Studies in conditional ablation models showed that conventional type 1 DCs and plasmacytoid DCs were required for the response. In tumour models where the combined treatment was less effective, the addition of tumour-antigen derived peptide, preferably conjugated to α-GalCer, significantly enhanced the antitumour response. The combination of TLR ligation, NKT cell agonism, and peptide delivery could therefore be adapted to induce responses to both known and unknown antigens.