Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Perturbation of mucosal-associated invariant T cells and iNKT cells in HIV infection
    Juno, JA ; Phetsouphanh, C ; Klenerman, P ; Kent, SJ (LIPPINCOTT WILLIAMS & WILKINS, 2019-03)
    PURPOSE OF REVIEW: To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS: A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY: The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
  • Item
    Thumbnail Image
    Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection?
    Juno, JA ; van Bockel, D ; Kent, SJ ; Kelleher, AD ; Zaunders, JJ ; Munier, CML (FRONTIERS MEDIA SA, 2017-01-23)
    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections.
  • Item
    Thumbnail Image
    Mucosal-Associated Invariant T Cells Are Depleted and Exhibit Altered Chemokine Receptor Expression and Elevated Granulocyte Macrophage-Colony Stimulating Factor Production During End-Stage Renal Disease
    Juno, JA ; Waruk, JLM ; Wragg, KM ; Mesa, C ; Lopez, C ; Bueti, J ; Kent, SJ ; Ball, TB ; Kiazyk, SA (FRONTIERS MEDIA SA, 2018-05-17)
    BACKGROUND: End-stage renal disease (ESRD) is associated with an increased susceptibility to infectious diseases, including infection with Mycobacterium tuberculosis (Mtb). Mucosal-associated invariant T (MAIT) cells recognize vitamin B metabolites produced by many bacterial species, including Mtb, and may play an important role in providing protective immunity against tuberculosis infection in the lung. To date, little is known about MAIT cell frequency, phenotype, or function in ESRD patients. METHODS: MAIT cells, identified by surface marker expression or MR1 tetramer binding, were characterized in 20 ESRD and 20 healthy control participants by multicolor flow cytometry. Ex vivo MAIT cell phenotype and cytokine production following PMA/ionomycin, IL-12/IL-18, or Escherichia coli stimulation were determined. Monocyte phenotype and plasma C-reactive protein/inflammatory cytokine levels were quantified by flow cytometry, ELISA, and multiplex bead array. RESULTS: Peripheral blood MAIT cells were significantly depleted among ESRD patients compared to controls by both phenotypic and tetramer analysis and exhibited a loss of CXCR3 expression coupled to increased expression of CCR6 and CXCR6. ESRD was also associated with a shift in MAIT PMA-induced cytokine production away from IFNγ production and toward granulocyte macrophage-colony stimulating factor (GM-CSF) secretion, and a loss of E. coli-stimulated tumor necrosis factor α expression. Loss of IFNγ expression was associated with a combination of age, alterations in Tbet and Eomes expression, and inflammatory plasma cytokine levels. CONCLUSION: The loss of peripheral blood MAIT cells and associated shifts in tissue homing receptor expression and GM-CSF production may contribute to an immune environment that is permissive to bacterial replication, particularly in the lungs.
  • Item
    Thumbnail Image
    Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem
    Tan, H-X ; Jegaskanda, S ; Juno, JA ; Esterbauer, R ; Wong, J ; Kelly, HG ; Liu, Y ; Tilmanis, D ; Hurt, AC ; Yewdell, JW ; Kent, SJ ; Wheatley, AK (AMER SOC CLINICAL INVESTIGATION INC, 2019-02-01)
    Both natural influenza infection and current seasonal influenza vaccines primarily induce neutralizing antibody responses against highly diverse epitopes within the "head" of the viral hemagglutinin (HA) protein. There is increasing interest in redirecting immunity toward the more conserved HA stem or stalk as a means of broadening protective antibody responses. Here we examined HA stem-specific B cell and T follicular helper (Tfh) cell responses in the context of influenza infection and immunization in mouse and monkey models. We found that during infection, the stem domain was immunologically subdominant to the head in terms of serum antibody production and antigen-specific B and Tfh cell responses. Similarly, we found that HA stem immunogens were poorly immunogenic compared with the full-length HA with abolished sialic acid binding activity, with limiting Tfh cell elicitation a potential constraint to the induction or boosting of anti-stem immunity by vaccination. Finally, we confirm that currently licensed seasonal influenza vaccines can boost preexisting memory responses against the HA stem in humans. An increased understanding of the immune dynamics surrounding the HA stem is essential to inform the design of next-generation influenza vaccines for broad and durable protection.
  • Item
    Thumbnail Image
    Inducible Bronchus-Associated Lymphoid Tissues (iBALT) Serve as Sites of B Cell Selection and Maturation Following Influenza Infection in Mice
    Tan, H-X ; Esterbauer, R ; Vanderven, HA ; Juno, JA ; Kent, SJ ; Wheatley, AK (FRONTIERS MEDIA SA, 2019-03-29)
    Seasonally recurrent influenza virus infections are a significant cause of global morbidity and mortality. In murine models, primary influenza infection in the respiratory tract elicits potent humoral responses concentrated in the draining mediastinal lymph node and the spleen. In addition to immunity within secondary lymphoid organs (SLO), pulmonary infection is also associated with formation of ectopic inducible bronchus-associated tissues (iBALT) in the lung. These structures display a lymphoid organization, but their function and protective benefits remain unclear. Here we examined the phenotype, transcriptional profile and antigen specificity of B cell populations forming iBALT in influenza infected mice. We show that the cellular composition of iBALT was comparable to SLO, containing populations of follicular dendritic cells (FDC), T-follicular helper (Tfh) cells, and germinal center (GC)-like B cells with classical dark- and light-zone polarization. Transcriptional profiles of GC B cells in iBALT and SLO were conserved regardless of anatomical localization. The architecture of iBALT was pleiomorphic and less structurally defined than SLO. Nevertheless, we show that GC-like structures within iBALT serve as a distinct niche that independently support the maturation and selection of B cells primarily targeted against the influenza virus nucleoprotein. Our findings suggest that iBALT, which are positioned at the frontline of the lung mucosa, drive long-lived, and unique GC reactions that contribute to the diversity of the humoral response targeting influenza.
  • Item
    No Preview Available
    Modulation of the CCR5 Receptor/Ligand Axis by Seminal Plasma and the Utility of In Vitro versus In Vivo Models
    Juno, JA ; Wragg, KM ; Kristensen, AB ; Lee, WS ; Selva, KJ ; van der Sluis, RM ; Kelleher, AD ; Bavinton, BR ; Grulich, AE ; Lewin, SR ; Kent, SJ ; Parsons, MS ; Simon, V (AMER SOC MICROBIOLOGY, 2019-06)
    Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design.IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.