Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Integrated immune networks in SARS-CoV-2 infected pregnant women reveal differential NK cell and unconventional T cell activation
    Kedzierska, K ; Habel, J ; Chua, B ; Kedzierski, L ; Selva, K ; Damelang, T ; Haycroft, E ; Nguyen, T ; Koay, H-F ; Nicholson, S ; McQuilten, H ; Jia, X ; Allen, L ; Hensen, L ; Zhang, W ; de Sandt, CV ; Neil, J ; Amanat, F ; Krammer, F ; Wragg, K ; Juno, J ; Wheatley, A ; Tan, H-X ; Pell, G ; Audsley, J ; Thevarajan, I ; Denholm, J ; Subbarao, K ; Godfrey, D ; Cheng, A ; Tong, S ; Bond, K ; Williamson, D ; James, F ; Holmes, N ; Smibert, O ; Trubiona, J ; Gordon, C ; Chung, A ; Whitehead, C ; Kent, S ; Lappas, M ; Rowntree, L ( 2021)
    Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4 + and CD8 + T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.
  • Item
    Thumbnail Image
    High expression of CD38 and MHC class II on CD8+T cells during severe influenza disease reflects bystander activation and trogocytosis
    Jia, X ; Chua, B ; Loh, L ; Koutsakos, M ; Kedzierski, L ; Olshanski, M ; Heath, W ; Xu, J ; Wang, Z ; Kedzierska, K ( 2021)
    Although co-expression of CD38 and HLA-DR on CD8 + T cells reflects activation during influenza, SARS-CoV-2, Dengue, Ebola and HIV-1 viral infections, high and prolonged CD38 + HLA-DR + expression can be associated with severe and fatal disease outcomes. As the expression of CD38 + HLA-DR + is poorly understood, we used mouse models of influenza A/H7N9, A/H3N2 and A/H1N1 infection to investigate the mechanisms underpinning CD38 + MHC-II + phenotype on CD8 + T-cells. Our analysis of influenza-specific immunodominant D b NP 366 +CD8 + T-cell responses showed that CD38 + MHC-II + co-expression was detected on both virus-specific and bystander CD8 + T-cells, with increased numbers of both CD38 + MHC-II + CD8 + T-cell populations observed in the respiratory tract during severe infection. To understand the mechanisms underlying CD38 and MHC-II expression, we also used adoptively-transferred transgenic OT-I CD8 + T-cells recognising the ovalbumin-derived K b SIINFEKL epitope and A/H1N1-SIINKEKL infection. Strikingly, we found that OT-I cells adoptively-transferred into MHC-II −/− mice did not display MHC-II after influenza virus infection, suggesting that MHC-II was acquired via trogocytosis in wild-type mice. Additionally, detection of CD19 on CD38 + MHC II + OT-I cells further supports that MHC-II was acquired by trogocytosis, at least partially, sourced from B-cells. Our results also revealed that co-expression of CD38 + MHC II + on CD8 + T-cells was needed for the optimal recall ability following secondary viral challenge. Overall, our study provides evidence that both virus-specific and bystander CD38 + MHC-II + CD8 + T-cells are recruited to the site of infection during severe disease, and that MHC-II expression occurs via trogocytosis from antigen-presenting cells. Our findings also highlight the importance of the CD38 + MHC II + phenotype for CD8 + T-cell memory establishment and recall.

    Summary

    Co-expression of CD38 and MHC-II on CD8 + T cells is recognized as a classical hallmark of activation during viral infections. High and prolonged CD38 + HLA-DR + expression, however, can be associated with severe disease outcomes and the mechanisms are unclear. Using our established influenza wild-type and transgenic mouse models, we determined how disease severity affected the activation of influenza-specific CD38 + MHC-II + CD8 + T cell responses in vivo and the antigenic determinants that drive their activation and expansion. Overall, our study provides evidence that both virus-specific and bystander CD38 + MHC-II + CD8 + T-cells are recruited to the site of infection during severe disease, and that MHC-II expression occurs, at least in part, via trogocytosis from antigen-presenting cells. Our findings also highlight the importance of the CD38 + MHC II + phenotype for CD8 + T-cell memory establishment and recall.