Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    No Preview Available
    Robust immunity to influenza vaccination in haematopoietic stem cell transplant recipients following reconstitution of humoral and adaptive immunity
    Zhang, W ; Rowntree, LC ; Muttucumaru, R ; Damelang, T ; Aban, M ; Hurt, AC ; Auladell, M ; Esterbauer, R ; Wines, B ; Hogarth, M ; Turner, SJ ; Wheatley, AK ; Kent, SJ ; Patil, S ; Avery, S ; Morrissey, O ; Chung, AW ; Koutsakos, M ; Nguyen, THO ; Cheng, AC ; Kotsimbos, TC ; Kedzierska, K (WILEY, 2023)
    OBJECTIVES: Influenza causes significant morbidity and mortality, especially in high-risk populations. Although current vaccination regimens are the best method to combat annual influenza disease, vaccine efficacy can be low in high-risk groups, such as haematopoietic stem cell transplant (HSCT) recipients. METHODS: We comprehensively assessed humoral immunity, antibody landscapes, systems serology and influenza-specific B-cell responses, together with their phenotypes and isotypes, to the inactivated influenza vaccine (IIV) in HSCT recipients in comparison to healthy controls. RESULTS: Inactivated influenza vaccine significantly increased haemagglutination inhibition (HAI) titres in HSCT recipients, similar to healthy controls. Systems serology revealed increased IgG1 and IgG3 antibody levels towards the haemagglutinin (HA) head, but not to neuraminidase, nucleoprotein or HA stem. IIV also increased frequencies of total, IgG class-switched and CD21loCD27+ influenza-specific B cells, determined by HA probes and flow cytometry. Strikingly, 40% of HSCT recipients had markedly higher antibody responses towards A/H3N2 vaccine strain than healthy controls and showed cross-reactivity to antigenically drifted A/H3N2 strains by antibody landscape analysis. These superior humoral responses were associated with a greater time interval after HSCT, while multivariant analyses revealed the importance of pre-existing immune memory. Conversely, in HSCT recipients who did not respond to the first dose, the second IIV dose did not greatly improve their humoral response, although 50% of second-dose patients reached a seroprotective HAI titre for at least one of vaccine strains. CONCLUSIONS: Our study demonstrates efficient, although time-dependent, immune responses to IIV in HSCT recipients, and provides insights into influenza vaccination strategies targeted to immunocompromised high-risk groups.
  • Item
    No Preview Available
    SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses
    Koutsakos, M ; Reynaldi, A ; Lee, WS ; Nguyen, J ; Amarasena, T ; Taiaroa, G ; Kinsella, P ; Liew, KC ; Tran, T ; Kent, HE ; Tan, H-X ; Rowntree, LC ; Nguyen, THO ; Thomas, PG ; Kedzierska, K ; Petersen, J ; Rossjohn, J ; Williamson, DA ; Khoury, D ; Davenport, MP ; Kent, SJ ; Wheatley, AK ; Juno, JA (CELL PRESS, 2023-04-11)
    Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.
  • Item
    No Preview Available
    Evaluation of Human Circulating T Follicular Helper Cells in Influenza- and SARS-CoV-2-Specific B Cell Immunity.
    Koutsakos, M ; Kedzierska, K ; Nguyen, THO (Springer US, 2022)
    Generation of effective immune protection against viral infection and vaccination depends greatly on a successful engagement and stimulation of adaptive immune B cells and a specialized CD4+ T cell subset called T follicular helper cells (TFH cells). Since TFH cells primarily reside in lymphoid tissues, they can be challenging to study in human settings. However, a counterpart of these cells, circulating TFH (cTFH) cells, can be detected in peripheral blood. Assessment of cTFH cells serves as an informative marker of humoral responses following viral infection and vaccination and can be predictive of antibody titers. Here, we describe a comprehensive flow cytometry detection method for dissecting cTFH subsets and activation, together with the assessment of antibody-secreting cells (ASCs), from a small volume of human whole blood. This approach allows the investigation of cellular events that underpin successful immune responses following influenza and SARS-CoV-2 infection/vaccination in humans and is applicable to other viral disease settings.
  • Item
    Thumbnail Image
    Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques
    Chua, BY ; Sekiya, T ; Koutsakos, M ; Nomura, N ; Rowntree, LC ; Nguyen, THO ; McQuilten, HA ; Ohno, M ; Ohara, Y ; Nishimura, T ; Endo, M ; Itoh, Y ; Habel, JR ; Selva, KJ ; Wheatley, AK ; Wines, BD ; Hogarth, PM ; Kent, SJ ; Chung, AW ; Jackson, DC ; Brown, LE ; Shingai, M ; Kedzierska, K ; Kida, H ; Klein, SL (PUBLIC LIBRARY SCIENCE, 2022-10)
    Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.
  • Item
    Thumbnail Image
    SATB1 ensures appropriate transcriptional programs within naive CD8+ T cells
    Nussing, S ; Miosge, LA ; Lee, K ; Olshansky, M ; Barugahare, A ; Roots, CM ; Sontani, Y ; Day, EB ; Koutsakos, M ; Kedzierska, K ; Goodnow, CC ; Russ, BE ; Daley, SR ; Turner, SJ (WILEY, 2022-09)
    Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.
  • Item
    Thumbnail Image
    Robust and prototypical immune responses toward influenza vaccines in the high-risk group of Indigenous Australians
    Hensen, L ; Nguyen, THO ; Rowntree, LC ; Damelang, T ; Koutsakos, M ; Aban, M ; Hurt, A ; Harland, KL ; Auladell, M ; van de Sandt, CE ; Everitt, A ; Blacker, C ; Oyong, DA ; Loughland, JR ; Webb, JR ; Wines, BD ; Hogarth, PM ; Flanagan, KL ; Plebanski, M ; Wheatley, A ; Chung, AW ; Kent, SJ ; Miller, A ; Clemens, EB ; Doherty, PC ; Nelson, J ; Davies, J ; Tong, SYC ; Kedzierska, K (NATL ACAD SCIENCES, 2021-10-12)
    Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.
  • Item
    Thumbnail Image
    High expression of CD38 and MHC class II on CD8+ T cells during severe influenza disease reflects bystander activation and trogocytosis
    Jia, X ; Chua, BY ; Loh, L ; Koutsakos, M ; Kedzierski, L ; Olshansky, M ; Heath, WR ; Chang, SY ; Xu, J ; Wang, Z ; Kedzierska, K (WILEY, 2021)
    OBJECTIVES: Although co-expression of CD38 and HLA-DR reflects T-cell activation during viral infections, high and prolonged CD38+HLA-DR+ expression is associated with severe disease. To date, the mechanism underpinning expression of CD38+HLA-DR+ is poorly understood. METHODS: We used mouse models of influenza A/H9N2, A/H7N9 and A/H3N2 infection to investigate mechanisms underpinning CD38+MHC-II+ phenotype on CD8+ T cells. To further understand MHC-II trogocytosis on murine CD8+ T cells as well as the significance behind the scenario, we used adoptively transferred transgenic OT-I CD8+ T cells and A/H3N2-SIINKEKL infection. RESULTS: Analysis of influenza-specific immunodominant DbNP366 +CD8+ T-cell responses showed that CD38+MHC-II+ co-expression was detected on both virus-specific and bystander CD8+ T cells, with increased numbers of both CD38+MHC-II+CD8+ T-cell populations observed in immune organs including the site of infection during severe viral challenge. OT-I cells adoptively transferred into MHC-II-/- mice had no MHC-II after infection, suggesting that MHC-II was acquired via trogocytosis. The detection of CD19 on CD38+MHC-II+ OT-I cells supports the proposition that MHC-II was acquired by trogocytosis sourced from B cells. Co-expression of CD38+MHC-II+ on CD8+ T cells was needed for optimal recall following secondary infection. CONCLUSIONS: Overall, our study demonstrates that both virus-specific and bystander CD38+MHC-II+ CD8+ T cells are recruited to the site of infection during severe disease, and that MHC-II presence occurs via trogocytosis from antigen-presenting cells. Our findings highlight the importance of the CD38+MHC-II+ phenotype for CD8+ T-cell recall.
  • Item
    Thumbnail Image
    SARS-CoV-2-specific CD8+ T-cell responses and TCR signatures in the context of a prominent HLA-A*24:02 allomorph
    Rowntree, LC ; Petersen, J ; Juno, JA ; Chaurasia, P ; Wragg, K ; Koutsakos, M ; Hensen, L ; Wheatley, AK ; Kent, SJ ; Rossjohn, J ; Kedzierska, K ; Nguyen, THO (WILEY, 2021-10)
    In-depth understanding of human T-cell-mediated immunity in coronavirus disease 2019 (COVID-19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell epitopes and generation of peptide-human leukocyte antigen (peptide-HLA) tetramers facilitate direct ex vivo analyses of SARS-CoV-2-specific T cells and their T-cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS-CoV-2 epitopes restricted by HLA-A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike-derived peptides generated CD8+ IFNγ+ responses above background, S1208-1216 (QYIKWPWYI), S448-456 (NYNYLYRLF) and S193-201 (VFKNIDGYF), with S1208 generating immunodominant CD8+ IFNγ+ responses. Using peptide-HLA-I tetramers, we performed direct ex vivo tetramer enrichment for HLA-A*24:02-restricted CD8+ T cells in COVID-19 patients and prepandemic controls. The precursor frequencies for HLA-A*24:02-restricted epitopes were within the range previously observed for other SARS-CoV-2 epitopes for both COVID-19 patients and prepandemic individuals. Naïve A24/SARS-CoV-2-specific CD8+ T cells increased nearly 7.5-fold above the average precursor frequency during COVID-19, gaining effector and memory phenotypes. Ex vivo single-cell analyses of TCRαβ repertoires found that the A24/S448+ CD8+ T-cell TCRαβ repertoire was driven by a common TCRβ chain motif, whereas the A24/S1208+ CD8+ TCRαβ repertoire was diverse across COVID-19 patients. Our study provides an in depth characterization and important insights into SARS-CoV-2-specific CD8+ T-cell responses associated with a prominent HLA-A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID-19 and could be exploited in vaccine or immunotherapeutic approaches.
  • Item
    Thumbnail Image
    High expression of CD38 and MHC class II on CD8+T cells during severe influenza disease reflects bystander activation and trogocytosis
    Jia, X ; Chua, B ; Loh, L ; Koutsakos, M ; Kedzierski, L ; Olshanski, M ; Heath, W ; Xu, J ; Wang, Z ; Kedzierska, K ( 2021)
    Although co-expression of CD38 and HLA-DR on CD8 + T cells reflects activation during influenza, SARS-CoV-2, Dengue, Ebola and HIV-1 viral infections, high and prolonged CD38 + HLA-DR + expression can be associated with severe and fatal disease outcomes. As the expression of CD38 + HLA-DR + is poorly understood, we used mouse models of influenza A/H7N9, A/H3N2 and A/H1N1 infection to investigate the mechanisms underpinning CD38 + MHC-II + phenotype on CD8 + T-cells. Our analysis of influenza-specific immunodominant D b NP 366 +CD8 + T-cell responses showed that CD38 + MHC-II + co-expression was detected on both virus-specific and bystander CD8 + T-cells, with increased numbers of both CD38 + MHC-II + CD8 + T-cell populations observed in the respiratory tract during severe infection. To understand the mechanisms underlying CD38 and MHC-II expression, we also used adoptively-transferred transgenic OT-I CD8 + T-cells recognising the ovalbumin-derived K b SIINFEKL epitope and A/H1N1-SIINKEKL infection. Strikingly, we found that OT-I cells adoptively-transferred into MHC-II −/− mice did not display MHC-II after influenza virus infection, suggesting that MHC-II was acquired via trogocytosis in wild-type mice. Additionally, detection of CD19 on CD38 + MHC II + OT-I cells further supports that MHC-II was acquired by trogocytosis, at least partially, sourced from B-cells. Our results also revealed that co-expression of CD38 + MHC II + on CD8 + T-cells was needed for the optimal recall ability following secondary viral challenge. Overall, our study provides evidence that both virus-specific and bystander CD38 + MHC-II + CD8 + T-cells are recruited to the site of infection during severe disease, and that MHC-II expression occurs via trogocytosis from antigen-presenting cells. Our findings also highlight the importance of the CD38 + MHC II + phenotype for CD8 + T-cell memory establishment and recall.

    Summary

    Co-expression of CD38 and MHC-II on CD8 + T cells is recognized as a classical hallmark of activation during viral infections. High and prolonged CD38 + HLA-DR + expression, however, can be associated with severe disease outcomes and the mechanisms are unclear. Using our established influenza wild-type and transgenic mouse models, we determined how disease severity affected the activation of influenza-specific CD38 + MHC-II + CD8 + T cell responses in vivo and the antigenic determinants that drive their activation and expansion. Overall, our study provides evidence that both virus-specific and bystander CD38 + MHC-II + CD8 + T-cells are recruited to the site of infection during severe disease, and that MHC-II expression occurs, at least in part, via trogocytosis from antigen-presenting cells. Our findings also highlight the importance of the CD38 + MHC II + phenotype for CD8 + T-cell memory establishment and recall.
  • Item
    Thumbnail Image
    Distinct systems serology features in children, elderly and COVID patients
    Selva, K ; van de Sandt, C ; Lemke, M ; Lee, C ; Shoffner, S ; Chua, B ; Nguyen, THO ; Rowntree, L ; Hensen, L ; Koutsakos, M ; Wong, CY ; Jackson, D ; Flanagan, K ; Crowe, J ; Cheng, A ; Doolan, D ; Amanat, F ; Krammer, F ; Chappell, K ; Modhiran, N ; Watterson, D ; Young, P ; Wines, B ; Hogarth, M ; Esterbauer, R ; Kelly, H ; Tan, H-X ; Juno, J ; Wheatley, A ; Kent, S ; Arnold, K ; Kedzierska, K ; Chung, A ( 2020)
    SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fcγ receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fcγ receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.