Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Control of viremia and prevention of AIDS following immunotherapy of SIV-infected macaques with peptide-pulsed blood
    De Rose, R ; Fernandez, CS ; Smith, MZ ; Batten, CJ ; Alcantara, S ; Peut, V ; Rollman, E ; Loh, L ; Mason, RD ; Wilson, K ; Law, MG ; Handley, AJ ; Kent, SJ ; Koup, RA (PUBLIC LIBRARY SCIENCE, 2008-05)
    Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIV(mac251) replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably approximately 10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.
  • Item
    Thumbnail Image
    Rapid viral escape at an immunodominant simian-human immunodeficiency virus cytotoxic T-lymphocyte epitope exacts a dramatic fitness cost
    Fernandez, CS ; Stratov, I ; De Rose, R ; Walsh, K ; Dale, CJ ; Smith, MZ ; Agy, MB ; Hu, SL ; Krebs, K ; Watkins, DI ; O'Connor, DH ; Davenport, MP ; Kent, SJ (AMER SOC MICROBIOLOGY, 2005-05)
    Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.