Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 3836
  • Item
    Thumbnail Image
    Histo-blood Group Antigen status of Australian Aboriginal children and seropositivity following oral rotavirus vaccination
    Middleton, B ; Danchin, M ; Cunliffe, N ; Jones, M ; Boniface, K ; Kirkwood, C ; Gallagher, S ; Kirkham, L-A ; Granland, C ; McNeal, M ; Donato, C ; Bogdanovic-Sakran, N ; Handley, A ; Bines, J ; Snelling, T ( 2022)
    Background: High rates of breakthrough rotavirus gastroenteritis have been reported among Aboriginal children living in rural and remote Australia despite receipt of two doses of oral rotavirus vaccine. Histo-blood group antigens (HBGAs) may mediate rotavirus genotype-dependent differences in susceptibility to rotavirus infection and immune responses to rotavirus vaccination. Methods: HBGA phenotype – Lewis and secretor status - was determined by enzyme immunoassay of saliva samples obtained from Australian Aboriginal children who were enrolled at age 6 to <12 months in a randomised clinical trial of an additional (booster) dose of oral rotavirus vaccine. Participants had received the routine two-dose schedule of oral rotavirus vaccine administered at age 6 weeks and 4 months. Non-secretor phenotype was confirmed by DNA extraction to identify FUT2 ‘G428A’ mutation. Rotavirus seropositivity was defined as serum anti-rotavirus IgA ≥ 20 AU/mL measured by ELISA on enrolment. Results: Of 156 children, 119 (76%) were secretors, 129 (83%) were Lewis antigen positive, and 105 (67%) were rotavirus IgA seropositive. Eighty-seven of 119 (73%) secretors were rotavirus seropositive, versus 4/9 (44%) weak secretors and 13/27 (48%) non-secretors. Eighty-nine of 129 (69%) Lewis antigen positive children were rotavirus seropositive versus 10 of 19 (53%) of those who were Lewis antigen negative. Conclusions Most Australian Aboriginal children were secretor and Lewis antigen positive. Non-secretor children were less likely to be seropositive for rotavirus following vaccination, but this phenotype was less common. HBGA status is unlikely to fully explain the underperformance of rotavirus vaccine at a population level among Australian Aboriginal children.
  • Item
    Thumbnail Image
    Caspase-2 does not play a critical role in cell death induction and bacterial clearance during Salmonella infection
    Engel, S ; Doerflinger, M ; Lee, AR ; Strasser, A ; Herold, MJ ; Bedoui, S ; Bachem, A (Springer Nature, 2021-12)
  • Item
    Thumbnail Image
    Emerging connectivity of programmed cell death pathways and its physiological implications
    Bedoui, S ; Herold, MJ ; Strasser, A (Nature Research, 2020-11)
    The removal of functionally dispensable, infected or potentially neoplastic cells is driven by programmed cell death (PCD) pathways, highlighting their important roles in homeostasis, host defence against pathogens, cancer and a range of other pathologies. Several types of PCD pathways have been described, including apoptosis, necroptosis and pyroptosis; they employ distinct molecular and cellular processes and differ in their outcomes, such as the capacity to trigger inflammatory responses. Recent genetic and biochemical studies have revealed remarkable flexibility in the use of these PCD pathways and indicate a considerable degree of plasticity in their molecular regulation; for example, despite having a primary role in inducing pyroptosis, inflammatory caspases can also induce apoptosis, and conversely, apoptotic stimuli can trigger pyroptosis. Intriguingly, this flexibility is most pronounced in cellular responses to infection, while apoptosis is the dominant cell death process through which organisms prevent the development of cancer. In this Review, we summarize the mechanisms of the different types of PCD and describe the physiological and pathological processes that engage crosstalk between these pathways, focusing on infections and cancer. We discuss the intriguing notion that the different types of PCD could be seen as a single, coordinated cell death system, in which the individual pathways are highly interconnected and can flexibly compensate for one another.
  • Item
    Thumbnail Image
    Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus
    Finsterbusch, M ; Hall, P ; Li, A ; Devi, S ; Westhorpe, CLV ; Kitching, AR ; Hickey, MJ (NATL ACAD SCIENCES, 2016-08-30)
    Nonclassical monocytes undergo intravascular patrolling in blood vessels, positioning them ideally to coordinate responses to inflammatory stimuli. Under some circumstances, the actions of monocytes have been shown to involve promotion of neutrophil recruitment. However, the mechanisms whereby patrolling monocytes control the actions of neutrophils in the circulation are unclear. Here, we examined the contributions of monocytes to antibody- and neutrophil-dependent inflammation in a model of in situ immune complex-mediated glomerulonephritis. Multiphoton and spinning disk confocal intravital microscopy revealed that monocytes patrol both uninflamed and inflamed glomeruli using β2 and α4 integrins and CX3CR1. Monocyte depletion reduced glomerular injury, demonstrating that these cells promote inappropriate inflammation in this setting. Monocyte depletion also resulted in reductions in neutrophil recruitment and dwell time in glomerular capillaries and in reactive oxygen species (ROS) generation by neutrophils, suggesting a role for cross-talk between monocytes and neutrophils in induction of glomerulonephritis. Consistent with this hypothesis, patrolling monocytes and neutrophils underwent prolonged interactions in glomerular capillaries, with the duration of these interactions increasing during inflammation. Moreover, neutrophils that interacted with monocytes showed increased retention and a greater propensity for ROS generation in the glomerulus. Also, renal patrolling monocytes, but not neutrophils, produced TNF during inflammation, and TNF inhibition reduced neutrophil dwell time and ROS production, as well as renal injury. These findings show that monocytes and neutrophils undergo interactions within the glomerular microvasculature. Moreover, evidence indicates that, in response to an inflammatory stimulus, these interactions allow monocytes to promote neutrophil recruitment and activation within the glomerular microvasculature, leading to neutrophil-dependent tissue injury.
  • Item
    Thumbnail Image
    Display of Native Antigen on cDC1 That Have Spatial Access to Both T and B Cells Underlies Efficient Humoral Vaccination.
    Kato, Y ; Steiner, TM ; Park, H-Y ; Hitchcock, RO ; Zaid, A ; Hor, JL ; Devi, S ; Davey, GM ; Vremec, D ; Tullett, KM ; Tan, PS ; Ahmet, F ; Mueller, SN ; Alonso, S ; Tarlinton, DM ; Ploegh, HL ; Kaisho, T ; Beattie, L ; Manton, JH ; Fernandez-Ruiz, D ; Shortman, K ; Lahoud, MH ; Heath, WR ; Caminschi, I (American Association of Immunologists, 2020-10-01)
    Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination.
  • Item
    Thumbnail Image
    Scavenging of soluble and immobilized CCL21 by ACKR4 regulates peripheral dendritic cell emigration
    Bastow, CR ; Bunting, MD ; Kara, EE ; McKenzie, DR ; Caon, A ; Devi, S ; Tolley, L ; Mueller, SN ; Frazer, IH ; Harvey, N ; Condina, MR ; Young, C ; Hoffmann, P ; McColl, SR ; Comerford, I (NATL ACAD SCIENCES, 2021-04-27)
    Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.
  • Item
    No Preview Available
    HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells
    Kueh, AJ ; Eccles, S ; Tang, L ; Garnham, AL ; May, RE ; Herold, MJ ; Smyth, GK ; Voss, AK ; Thomas, T (American Society for Microbiology, 2020-02-01)
    HBO1 (MYST2/KAT7) is essential for histone 3 lysine 14 acetylation (H3K14ac) but is dispensable for H4 acetylation and DNA replication in mouse tissues. In contrast, previous studies using small interfering RNA (siRNA) knockdown in human cell lines have suggested that HBO1 is essential for DNA replication. To determine if HBO1 has distinctly different roles in immortalized human cell lines and normal mouse cells, we performed siRNA knockdown of HBO1. In addition, we used CRISPR/Cas9 to generate 293T, MCF7, and HeLa cell lines lacking HBO1. Using both techniques, we show that HBO1 is essential for all H3K14ac in human cells and is unlikely to have a direct effect on H4 acetylation and only has minor effects on cell proliferation. Surprisingly, the loss of HBO1 and H3K14ac in HeLa cells led to the secondary loss of almost all H4 acetylation after 4 weeks. Thus, HBO1 is dispensable for DNA replication and cell proliferation in immortalized human cells. However, while cell proliferation proceeded without HBO1 and H3K14ac, HBO1 gene deletion led to profound changes in cell adhesion, particularly in 293T cells. Consistent with this phenotype, the loss of HBO1 in both 293T and HeLa principally affected genes mediating cell adhesion, with comparatively minor effects on other cellular processes.
  • Item
    No Preview Available
    Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development
    Carpino, N ; Thierfelder, WE ; Chang, MS ; Saris, C ; Turner, SJ ; Ziegler, SF ; Ihle, JN (AMER SOC MICROBIOLOGY, 2004-03)
    The murine cytokine thymic stromal lymphopoietin (TSLP) supports the development of B220+ IgM+ immature B cells and induces thymocyte proliferation in vitro. Human TSLP, by contrast, activates CD11c+ dendritic cells, but not B or T cells. Recent studies have demonstrated that the receptor for TSLP consists of a heterodimer of the interleukin 7 (IL-7) alpha chain and a novel protein that resembles the hematopoietic cytokine receptor common gamma chain. We examined signal transduction by the gamma-like chains using chimeric receptor proteins. The cytoplasmic domain of the human, but not of the murine, gamma-like chain, activates Jak2 and Stat5 and supports the proliferation of hematopoietic cell lines. In order to assess the role of the murine gamma-like chain in vivo, we generated gamma-like chain-deficient mice. Receptor-deficient mice are unresponsive to TSLP but exhibit no obvious phenotypic defects. In particular, hematopoietic cell development appeared normal. B-cell development, including the IgM+ compartment, was unaffected by loss of the TSLP pathway, as were T lymphopoiesis and lymphocyte proliferation in vitro. Cytokine receptors that utilize the common gamma chain signal through the lymphocyte-specific kinase Jak3. Mice deficient in Jak3 exhibit a SCID phenotype but harbor a residual B220+ splenic lymphocyte population. We demonstrate here that this residual lymphocyte population is lost in mice lacking both the gamma-like chain and Jak3.
  • Item
    Thumbnail Image
    The structure and activity of the glutathione reductase from Streptococcus pneumoniae
    Sikanyika, M ; Aragao, D ; McDevitt, CA ; Maher, MJ (INT UNION CRYSTALLOGRAPHY, 2019-01)
    The glutathione reductase (GR) from Streptococcus pneumoniae is a flavoenzyme that catalyzes the reduction of oxidized glutathione (GSSG) to its reduced form (GSH) in the cytoplasm of this bacterium. The maintenance of an intracellular pool of GSH is critical for the detoxification of reactive oxygen and nitrogen species and for intracellular metal tolerance to ions such as zinc. Here, S. pneumoniae GR (SpGR) was overexpressed and purified and its crystal structure determined at 2.56 Å resolution. SpGR shows overall structural similarity to other characterized GRs, with a dimeric structure that includes an antiparallel β-sheet at the dimer interface. This observation, in conjunction with comparisons with the interface structures of other GR enzymes, allows the classification of these enzymes into three classes. Analyses of the kinetic properties of SpGR revealed a significantly higher value for Km(GSSG) (231.2 ± 24.7 µM) in comparison to other characterized GR enzymes.
  • Item
    Thumbnail Image
    Defining the Role of the Streptococcus agalactiae Sht-Family Proteins in Zinc Acquisition and Complement Evasion
    Moulin, P ; Rong, V ; Ribeiro E Silva, A ; Pederick, VG ; Camlade, E ; Mereghetti, L ; McDevitt, CA ; Hiron, A ; Federle, MJ (American Society for Microbiology, 2019-04)
    Streptococcus agalactiae is not only part of the human intestinal and urogenital microbiota but is also a leading cause of septicemia and meningitis in neonates. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including the transition metal ion zinc. The primary zinc acquisition system of the pathogen is the Adc/Lmb ABC permease, which is essential for viability in zinc-restricted environments. Here, we show that in addition to the AdcCB transporter and the three zinc-binding proteins, Lmb, AdcA, and AdcAII, S. agalactiae zinc homeostasis also involves two streptococcal histidine triad (Sht) proteins. Sht and ShtII are required for zinc uptake via the Lmb and AdcAII proteins with apparent overlapping functionality and specificity. Both Sht-family proteins possess five-histidine triad motifs with similar hierarchies of importance for Zn homeostasis. Independent of its contribution to zinc homeostasis, Sht has previously been reported to bind factor H leading to predictions of a contribution to complement evasion. Here, we investigated ShtII to ascertain whether it had similar properties. Analysis of recombinant Sht and ShtII reveals that both proteins have similar affinities for factor H binding. However, neither protein aided in resistance to complement in human blood. These findings challenge prior inferences regarding the in vivo role of the Sht proteins in resisting complement-mediated clearance. IMPORTANCE This study examined the role of the two streptococcal histidine triad (Sht) proteins of Streptococcus agalactiae in zinc homeostasis and complement resistance. We showed that Sht and ShtII facilitate zinc homeostasis in conjunction with the metal-binding proteins Lmb and AdcAII. Here, we show that the Sht-family proteins are functionally redundant with overlapping roles in zinc uptake. Further, this work reveals that although the Sht-family proteins bind to factor H in vitro this did not influence survival in human blood.