Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 2544
  • Item
    Thumbnail Image
    PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein
    Daniel, PM ; Filiz, G ; Brown, DV ; Christie, M ; Waring, PM ; Zhang, Y ; Haynes, JM ; Pouton, C ; Flanagan, D ; Vincan, E ; Johns, TG ; Montgomery, K ; Phillips, WA ; Mantamadiotis, T (Oxford University Press, 2018-10)
    BACKGROUND: Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling is common in cancers, but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells (NSPCs), where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. METHODS: To investigate the role of the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, phosphatase and tensin homolog (PTEN), to NSPCs. RESULTS: Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features, but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased Wnt signaling, while loss of cAMP response element binding protein (CREB) in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. CONCLUSION: Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.
  • Item
    Thumbnail Image
    Investigating Neural Stem Cell and Glioma Stem Cell Self-renewal Potential Using Extreme Limiting Dilution Analysis (ELDA)
    Nguyen, HPT ; Daniel, PM ; Filiz, G ; Mantamadiotis, T (BIO-PROTOCOL, 2018-09-05)
    Glioma stem cells (GSC) grown as neurospheres exhibit similar characteristics to neural stem cells (NSC) grown as neurospheres, including the ability to self-renew and differentiate. GSCs are thought to play a role in cancer initiation and progression. Self-renewal potential of GSCs is thought to reflect many characteristics associated with malignancy, including tumor recurrence following cytotoxic therapy due to their proliferative dormancy and capacity to allow for the development of resistant tumor cell sub-clones due to mutations acquired during their differentiation. Here, we demonstrate that using extreme limiting dilution analysis (ELDA), subtle differences in the frequency of sphere-forming potential between PI3K-mutant oncogenic NSCs and non-oncogenic NSCs can be measured, in vitro. We further show how ELDA can be used on cells, before and after forced differentiation to amplify inherent differences in sphere-forming potential between mutant and control NSCs. Ultimately, ELDA exploits a difference in the ability of a single or a few seeded stem cells to self-renew, divide and form neurospheres. Importantly, the assay also allows a comparison between genetically distinct cells or between the same cells under different conditions, where the impact of target-specific drugs or other novel cancer stem cell therapies can be tested.
  • Item
    Thumbnail Image
    Emerging connectivity of programmed cell death pathways and its physiological implications
    Bedoui, S ; Herold, MJ ; Strasser, A (Nature Research, 2020-11)
    The removal of functionally dispensable, infected or potentially neoplastic cells is driven by programmed cell death (PCD) pathways, highlighting their important roles in homeostasis, host defence against pathogens, cancer and a range of other pathologies. Several types of PCD pathways have been described, including apoptosis, necroptosis and pyroptosis; they employ distinct molecular and cellular processes and differ in their outcomes, such as the capacity to trigger inflammatory responses. Recent genetic and biochemical studies have revealed remarkable flexibility in the use of these PCD pathways and indicate a considerable degree of plasticity in their molecular regulation; for example, despite having a primary role in inducing pyroptosis, inflammatory caspases can also induce apoptosis, and conversely, apoptotic stimuli can trigger pyroptosis. Intriguingly, this flexibility is most pronounced in cellular responses to infection, while apoptosis is the dominant cell death process through which organisms prevent the development of cancer. In this Review, we summarize the mechanisms of the different types of PCD and describe the physiological and pathological processes that engage crosstalk between these pathways, focusing on infections and cancer. We discuss the intriguing notion that the different types of PCD could be seen as a single, coordinated cell death system, in which the individual pathways are highly interconnected and can flexibly compensate for one another.
  • Item
    Thumbnail Image
    Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus
    Finsterbusch, M ; Hall, P ; Li, A ; Devi, S ; Westhorpe, CLV ; Kitching, AR ; Hickey, MJ (NATL ACAD SCIENCES, 2016-08-30)
    Nonclassical monocytes undergo intravascular patrolling in blood vessels, positioning them ideally to coordinate responses to inflammatory stimuli. Under some circumstances, the actions of monocytes have been shown to involve promotion of neutrophil recruitment. However, the mechanisms whereby patrolling monocytes control the actions of neutrophils in the circulation are unclear. Here, we examined the contributions of monocytes to antibody- and neutrophil-dependent inflammation in a model of in situ immune complex-mediated glomerulonephritis. Multiphoton and spinning disk confocal intravital microscopy revealed that monocytes patrol both uninflamed and inflamed glomeruli using β2 and α4 integrins and CX3CR1. Monocyte depletion reduced glomerular injury, demonstrating that these cells promote inappropriate inflammation in this setting. Monocyte depletion also resulted in reductions in neutrophil recruitment and dwell time in glomerular capillaries and in reactive oxygen species (ROS) generation by neutrophils, suggesting a role for cross-talk between monocytes and neutrophils in induction of glomerulonephritis. Consistent with this hypothesis, patrolling monocytes and neutrophils underwent prolonged interactions in glomerular capillaries, with the duration of these interactions increasing during inflammation. Moreover, neutrophils that interacted with monocytes showed increased retention and a greater propensity for ROS generation in the glomerulus. Also, renal patrolling monocytes, but not neutrophils, produced TNF during inflammation, and TNF inhibition reduced neutrophil dwell time and ROS production, as well as renal injury. These findings show that monocytes and neutrophils undergo interactions within the glomerular microvasculature. Moreover, evidence indicates that, in response to an inflammatory stimulus, these interactions allow monocytes to promote neutrophil recruitment and activation within the glomerular microvasculature, leading to neutrophil-dependent tissue injury.
  • Item
    Thumbnail Image
    Display of Native Antigen on cDC1 That Have Spatial Access to Both T and B Cells Underlies Efficient Humoral Vaccination.
    Kato, Y ; Steiner, TM ; Park, H-Y ; Hitchcock, RO ; Zaid, A ; Hor, JL ; Devi, S ; Davey, GM ; Vremec, D ; Tullett, KM ; Tan, PS ; Ahmet, F ; Mueller, SN ; Alonso, S ; Tarlinton, DM ; Ploegh, HL ; Kaisho, T ; Beattie, L ; Manton, JH ; Fernandez-Ruiz, D ; Shortman, K ; Lahoud, MH ; Heath, WR ; Caminschi, I (American Association of Immunologists, 2020-10-01)
    Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination.
  • Item
    No Preview Available
    HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells
    Kueh, AJ ; Eccles, S ; Tang, L ; Garnham, AL ; May, RE ; Herold, MJ ; Smyth, GK ; Voss, AK ; Thomas, T (American Society for Microbiology, 2020-02-01)
    HBO1 (MYST2/KAT7) is essential for histone 3 lysine 14 acetylation (H3K14ac) but is dispensable for H4 acetylation and DNA replication in mouse tissues. In contrast, previous studies using small interfering RNA (siRNA) knockdown in human cell lines have suggested that HBO1 is essential for DNA replication. To determine if HBO1 has distinctly different roles in immortalized human cell lines and normal mouse cells, we performed siRNA knockdown of HBO1. In addition, we used CRISPR/Cas9 to generate 293T, MCF7, and HeLa cell lines lacking HBO1. Using both techniques, we show that HBO1 is essential for all H3K14ac in human cells and is unlikely to have a direct effect on H4 acetylation and only has minor effects on cell proliferation. Surprisingly, the loss of HBO1 and H3K14ac in HeLa cells led to the secondary loss of almost all H4 acetylation after 4 weeks. Thus, HBO1 is dispensable for DNA replication and cell proliferation in immortalized human cells. However, while cell proliferation proceeded without HBO1 and H3K14ac, HBO1 gene deletion led to profound changes in cell adhesion, particularly in 293T cells. Consistent with this phenotype, the loss of HBO1 in both 293T and HeLa principally affected genes mediating cell adhesion, with comparatively minor effects on other cellular processes.
  • Item
    Thumbnail Image
    The structure and activity of the glutathione reductase from Streptococcus pneumoniae
    Sikanyika, M ; Aragao, D ; McDevitt, CA ; Maher, MJ (INT UNION CRYSTALLOGRAPHY, 2019-01)
    The glutathione reductase (GR) from Streptococcus pneumoniae is a flavoenzyme that catalyzes the reduction of oxidized glutathione (GSSG) to its reduced form (GSH) in the cytoplasm of this bacterium. The maintenance of an intracellular pool of GSH is critical for the detoxification of reactive oxygen and nitrogen species and for intracellular metal tolerance to ions such as zinc. Here, S. pneumoniae GR (SpGR) was overexpressed and purified and its crystal structure determined at 2.56 Å resolution. SpGR shows overall structural similarity to other characterized GRs, with a dimeric structure that includes an antiparallel β-sheet at the dimer interface. This observation, in conjunction with comparisons with the interface structures of other GR enzymes, allows the classification of these enzymes into three classes. Analyses of the kinetic properties of SpGR revealed a significantly higher value for Km(GSSG) (231.2 ± 24.7 µM) in comparison to other characterized GR enzymes.
  • Item
    Thumbnail Image
    Defining the Role of the Streptococcus agalactiae Sht-Family Proteins in Zinc Acquisition and Complement Evasion
    Moulin, P ; Rong, V ; Ribeiro E Silva, A ; Pederick, VG ; Camlade, E ; Mereghetti, L ; McDevitt, CA ; Hiron, A ; Federle, MJ (American Society for Microbiology, 2019-04)
    Streptococcus agalactiae is not only part of the human intestinal and urogenital microbiota but is also a leading cause of septicemia and meningitis in neonates. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including the transition metal ion zinc. The primary zinc acquisition system of the pathogen is the Adc/Lmb ABC permease, which is essential for viability in zinc-restricted environments. Here, we show that in addition to the AdcCB transporter and the three zinc-binding proteins, Lmb, AdcA, and AdcAII, S. agalactiae zinc homeostasis also involves two streptococcal histidine triad (Sht) proteins. Sht and ShtII are required for zinc uptake via the Lmb and AdcAII proteins with apparent overlapping functionality and specificity. Both Sht-family proteins possess five-histidine triad motifs with similar hierarchies of importance for Zn homeostasis. Independent of its contribution to zinc homeostasis, Sht has previously been reported to bind factor H leading to predictions of a contribution to complement evasion. Here, we investigated ShtII to ascertain whether it had similar properties. Analysis of recombinant Sht and ShtII reveals that both proteins have similar affinities for factor H binding. However, neither protein aided in resistance to complement in human blood. These findings challenge prior inferences regarding the in vivo role of the Sht proteins in resisting complement-mediated clearance. IMPORTANCE This study examined the role of the two streptococcal histidine triad (Sht) proteins of Streptococcus agalactiae in zinc homeostasis and complement resistance. We showed that Sht and ShtII facilitate zinc homeostasis in conjunction with the metal-binding proteins Lmb and AdcAII. Here, we show that the Sht-family proteins are functionally redundant with overlapping roles in zinc uptake. Further, this work reveals that although the Sht-family proteins bind to factor H in vitro this did not influence survival in human blood.
  • Item
    Thumbnail Image
    Structure and Metal Binding Properties of Chlamydia trachomatis YtgA
    Luo, Z ; Neville, SL ; Campbell, R ; Morey, JR ; Menon, S ; Thomas, M ; Eijkelkamp, BA ; Ween, MP ; Huston, WM ; Kobe, B ; McDevitt, CA ; Stock, AM (American Society for Microbiology, 2020-01)
    The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells. IMPORTANCEChlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.
  • Item
    Thumbnail Image
    Intracellular Accumulation of Staphylopine Can Sensitize Staphylococcus aureus to Host-Imposed Zinc Starvation by Chelation-Independent Toxicity
    Grim, KP ; Radin, JN ; Solorzano, PKP ; Morey, JR ; Frye, KA ; Ganio, K ; Neville, SL ; McDevitt, CA ; Kehl-Fie, TE ; Federle, MJ (American Society for Microbiology, 2020-04-09)
    The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant. IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.