Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Integrated immune networks in SARS-CoV-2 infected pregnant women reveal differential NK cell and unconventional T cell activation
    Kedzierska, K ; Habel, J ; Chua, B ; Kedzierski, L ; Selva, K ; Damelang, T ; Haycroft, E ; Nguyen, T ; Koay, H-F ; Nicholson, S ; McQuilten, H ; Jia, X ; Allen, L ; Hensen, L ; Zhang, W ; de Sandt, CV ; Neil, J ; Amanat, F ; Krammer, F ; Wragg, K ; Juno, J ; Wheatley, A ; Tan, H-X ; Pell, G ; Audsley, J ; Thevarajan, I ; Denholm, J ; Subbarao, K ; Godfrey, D ; Cheng, A ; Tong, S ; Bond, K ; Williamson, D ; James, F ; Holmes, N ; Smibert, O ; Trubiona, J ; Gordon, C ; Chung, A ; Whitehead, C ; Kent, S ; Lappas, M ; Rowntree, L ( 2021)
    Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4 + and CD8 + T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.
  • Item
    Thumbnail Image
    Evaluation of serological tests for SARS-CoV-2: Implications for serology testing in a low-prevalence setting
    Bond, K ; Nicholson, S ; Ming Lim, S ; Karapanagiotidis, T ; Williams, E ; Johnson, D ; Hoang, T ; Sia, C ; Purcell, D ; R Lewin, S ; Catton, M ; P Howden, B ; A Williamson, D ( 2020)

    Background

    Robust serological assays are essential for long-term control of the COVID-19 pandemic. Many recently released point-of-care (PoCT) serological assays have been distributed with little pre-market validation.

    Methods

    Performance characteristics for five PoCT lateral flow devices approved for use in Australia were compared to a commercial enzyme immunoassay (ELISA) and a recently described novel surrogate virus neutralisation test (sVNT).

    Results

    Sensitivities for PoCT ranged from 51.8% (95% CI 43.1 to 60.4%) to 67.9% (95% CI 59.4–75.6%), and specificities from 95.6% (95% CI 89.2–98.8%) to 100.0% (95% CI 96.1–100.0%). Overall ELISA sensitivity for either IgA or IgG detection was 67.9% (95% CI 59.4–75.6), increasing to 93.8% (95% CI 85.0–98.3%) for samples > 14 days post symptom onset. Overall, sVNT sensitivity was 60.9% (95% CI 53.2–68.4%), rising to 91.2%% (95% CI 81.8–96.7%) for samples collected > 14 days post-symptom onset, with a specificity 94.4% (95% CI 89.2–97.5%),

    Conclusion

    Performance characteristics for COVID-19 serological assays were generally lower than those reported by manufacturers. Timing of specimen collection relative to onset of illness or infection is crucial in the reporting of performance characteristics for COVID-19 serological assays. The optimal algorithm for implementing serological testing for COVID-19 remains to be determined, particularly in low-prevalence settings.
  • Item
    No Preview Available
    Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection.
    Chang, JJ-Y ; Rawlinson, D ; Pitt, M ; Taiaroa, G ; Gleeson, J ; Zhou, C ; Mordant, F ; Paoli-Iseppi, RD ; Caly, L ; Purcell, DFJ ; Stinear, T ; Londrigan, S ; Clark, M ; Williamson, D ; Subbarao, K ; Coin, LJM ( 2020-12-22)
    SARS-CoV-2 uses subgenomic (sg)RNA to produce viral proteins for replication and immune evasion. We applied long-read RNA and cDNA sequencing to in vitro human and primate infection models to study transcriptional dynamics. Transcription-regulating sequence (TRS)-dependent sgRNA was upregulated earlier in infection than TRS-independent sgRNA. An abundant class of TRS-independent sgRNA consisting of a portion of ORF1ab containing nsp1 joined to ORF10 and 3’UTR was upregulated at 48 hours post infection in human cell lines. We identified double-junction sgRNA containing both TRS-dependent and independent junctions. We found multiple sites at which the SARS-CoV-2 genome is consistently more modified than sgRNA, and that sgRNA modifications are stable across transcript clusters, host cells and time since infection. Our work highlights the dynamic nature of the SARS-CoV-2 transcriptome during its replication cycle. Our results are available via an interactive web-app at http://coinlab.mdhs.unimelb.edu.au/ .
  • Item
    Thumbnail Image
    Systematic analysis of key parameters for genomics-based real-time detection and tracking of multidrug-resistant bacteria
    Gorrie, C ; Da Silva, AG ; Ingle, D ; Higgs, C ; Seemann, T ; Stinear, T ; Williamson, D ; Kwong, J ; Grayson, L ; Sherry, N ; Howden, B ( 2020-09-25)
    Background: Pairwise single nucleotide polymorphisms (SNPs) are a cornerstone for genomic approaches to multidrug-resistant organisms (MDROs) transmission inference in hospitals. However, the impact of key analysis parameters on these inferences has not been systematically analysed. Methods: We conducted a multi-hospital 15-month prospective study, sequencing 1537 MDRO genomes for comparison; methicillin-resistant Staphylococcus aureus , vancomycin-resistant Enterococcus faecium , and extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae . We systematically assessed the impact of sample and reference genome diversity, masking of prophage and regions of recombination, cumulative genome analysis compared to a three-month sliding-window, and the comparative effects each of these had when applying a SNP threshold for inferring likely transmission (≤15 SNPs for S. aureus , ≤25 for other species). Findings: Across the species, using a reference genome of the same sequence type provided a greater degree of pairwise SNP resolution, compared to species and outgroup-reference alignments that typically resulted in inflated SNP distances and the possibility of missed transmission events. Omitting prophage regions had minimal impacts, however, omitting recombination regions a highly variable effect, often inflating the number of closely related pairs. Estimating pairwise SNP distances was more consistent using a sliding-window than a cumulative approach. Interpretation: The use of a closely-related reference genome, without masking of prophage or recombination regions, and a sliding-window for isolate inclusion is best for accurate and consistent MDRO transmission inference. The increased stability and resolution provided by these approaches means SNP thresholds for putative transmission inference can be more reliably applied among diverse MDROs. Funding: This work was supported by the Melbourne Genomics Health Alliance (funded by the State Government of Victoria, Department of Health and Human Services, and the ten member organizations); an National Health and Medical Research Council (Australia) Partnership grant (GNT1149991) and individual grants from National Health and Medical Research Council (Australia) to NLS (GNT1093468), JCK (GNT1008549) and BPH (GNT1105905).
  • Item
    Thumbnail Image
    Tracking the COVID-19 pandemic in Australia using genomics
    Seemann, T ; Lane, C ; Sherry, N ; Duchene, S ; Goncalves da Silva, A ; Caly, L ; Sait, M ; Ballard, S ; Horan, K ; Schultz, M ; Hoang, T ; Easton, M ; Dougall, S ; Stinear, T ; Druce, J ; Catton, M ; Sutton, B ; van Diemen, A ; Alpren, C ; Williamson, D ; Howden, B ( 2020)
    BACKGROUND: Whole-genome sequencing of pathogens can improve resolution of outbreak clusters and define possible transmission networks. We applied high-throughput genome sequencing of SARS-CoV-2 to 75% of cases in the State of Victoria (population 6.24 million) in Australia. METHODS: Cases of SARS-CoV-2 infection were detected through active case finding and contact tracing. A dedicated SARS-CoV-2 multidisciplinary genomic response team was formed to enable rapid integration of epidemiological and genomic data. Phylodynamic analysis was performed to assess the putative impact of social restrictions. RESULTS: Between 25 January and 14 April 2020, 1,333 COVID-19 cases were reported in Victoria, with a peak in late March. After applying internal quality control parameters, 903 samples were included in genomic analyses. Sequenced samples from Australia were representative of the global diversity of SARS-CoV-2, consistent with epidemiological findings of multiple importations and limited onward transmission. In total, 76 distinct genomic clusters were identified; these included large clusters associated with social venues, healthcare facilities and cruise ships. Sequencing of sequential samples from 98 patients revealed minimal intra-patient SARS-CoV-2 genomic diversity. Phylodynamic modelling indicated a significant reduction in the effective viral reproductive number (Re) from 1.63 to 0.48 after the implementation of travel restrictions and population-level physical distancing. CONCLUSIONS: Our data provide a comprehensive framework for the use of SARS-CoV-2 genomics in public health responses. The application of genomics to rapidly identify SARS-CoV-2 transmission chains will become critically important as social restrictions ease globally. Public health responses to emergent cases must be swift, highly focused and effective.