Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication
    Holloway, G ; Coulson, BS (AMER SOC MICROBIOLOGY, 2006-11)
    Rotavirus infection is known to regulate transcriptional changes in many cellular genes. The transcription factors NF-kappaB and AP-1 are activated by rotavirus infection, but the upstream processes leading to these events are largely unidentified. We therefore studied the activation state during rotavirus infection of c-Jun NH2-terminal kinase (JNK) and p38, which are kinases known to activate AP-1. As assessed by Western blotting using phospho-specific antibodies, infection with rhesus rotavirus (RRV) or exposure to UV-psoralen-inactivated RRV (I-RRV) resulted in the activation of JNK in HT-29, Caco-2, and MA104 cells. Activation of p38 during RRV infection was observed in Caco-2 and MA104 cells but not in HT-29 cells, whereas exposure to I-RRV did not lead to p38 activation in these cell lines. Rotavirus strains SA11, CRW-8, Wa, and UK also activated JNK and p38. Consistent with the activation of JNK, a corresponding increase in the phosphorylation of the AP-1 component c-Jun was shown. The interleukin-8 (IL-8) and c-jun promoters contain AP-1 binding sequences, and these genes have been shown previously to be transcriptionally up-regulated during rotavirus infection. Using specific inhibitors of JNK (SP600125) and p38 (SB203580) and real-time PCR, we showed that maximal RRV-induced IL-8 and c-jun transcription required JNK and p38 activity. This highlights the importance of JNK and p38 in RRV-induced, AP-1-driven gene expression. Significantly, inhibition of p38 or JNK in Caco-2 cells reduced RRV growth but not viral structural antigen expression, demonstrating the potential importance of JNK and p38 activation for optimal rotavirus replication.
  • Item
    Thumbnail Image
    Crystallization and preliminary X-ray diffraction analysis of the sialic acid-binding domain (VP8*) of porcine rotavirus strain CRW-8
    Scott, SA ; Holloway, G ; Coulson, BS ; Szyczew, AJ ; Kiefel, MJ ; von Itzstein, M ; Blanchard, H (INT UNION CRYSTALLOGRAPHY, 2005-06)
    Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by the virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 A resolution, enabling the determination of the VP8* structure by molecular replacement.
  • Item
    Thumbnail Image
    Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8*carbohydrate-binding protein of the human rotavirus strain Wa
    Kraschnefski, MJ ; Scott, SA ; Holloway, G ; Coulson, BS ; von Itzstein, M ; Blanchard, H (INT UNION CRYSTALLOGRAPHY, 2005-11)
    Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3(2)21 and monoclinic P2(1)) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8*(64-223) structure by molecular replacement.