Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    MHC class I allele frequencies in pigtail macaques of diverse origin
    Pratt, BF ; O'Connor, DH ; Lafont, BAP ; Mankowski, JL ; Fernandez, CS ; Triastuti, R ; Brooks, AG ; Kent, SJ ; Smith, MZ (SPRINGER, 2006-12)
    Pigtail macaques (Macaca nemestrina) are an increasingly common primate model for the study of human AIDS. Major Histocompatibility complex (MHC) class I-restricted CD8(+) T cell responses are a critical part of the adaptive immune response to HIV-1 in humans and simian immunodeficiency virus (SIV) in macaques; however, MHC class I alleles have not yet been comprehensively characterized in pigtail macaques. The frequencies of ten previously defined alleles (four Mane-A and six Mane-B) were investigated in detail in 109 pigtail macaques using reference strand-mediated conformational analysis (RSCA). The macaques were derived from three separate breeding colonies in the USA, Indonesia and Australia, and allele frequencies were analysed within and between these groups. Mane-A*10, an allele that restricts the immunodominant SIV Gag epitope KP9, was the most common allele, present in 32.1% of the animals overall, with similar frequencies across the three cohorts. Additionally, RSCA identified a new allele (Mane-A*17) common to three Indonesian pigtail macaques responding to the same Gag CD8(+) T cell epitope. This broad characterization of common MHC class I alleles in more than 100 pigtail macaques further develops this animal model for the study of virus-specific CD8(+) T cell responses.
  • Item
    Thumbnail Image
    Rapid viral escape at an immunodominant simian-human immunodeficiency virus cytotoxic T-lymphocyte epitope exacts a dramatic fitness cost
    Fernandez, CS ; Stratov, I ; De Rose, R ; Walsh, K ; Dale, CJ ; Smith, MZ ; Agy, MB ; Hu, SL ; Krebs, K ; Watkins, DI ; O'Connor, DH ; Davenport, MP ; Kent, SJ (AMER SOC MICROBIOLOGY, 2005-05)
    Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.