School of BioSciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    The evolutionary and functional characterisation of the ecdysteroid kinase-like (EcKL) gene family in insects
    Scanlan, Jack Louis ( 2020)
    Many thousands of gene families across the tree of life still lack robust functional characterisation, and thousands more may be under-characterised, with additional unknown functions not represented in official annotations. Here, I aim to characterise the evolution and functions of the poorly characterised ecdysteroid kinase-like (EcKL) gene family, which has a peculiar taxonomic distribution and is largely known for containing an ecdysteroid 22-kinase gene in the silkworm, Bombyx mori. I hypothesised that EcKLs may also be responsible for insect-specific ‘detoxification-by-phosphorylation’, as well as ecdysteroid hormone metabolism. My first approach was to explore the evolution of the EcKLs in the genus Drosophila (Diptera: Drosophilidae), which contains the well-studied model insect Drosophila melanogaster. Drosophila EcKLs have evolutionary and transcriptional similarities to the cytochrome P450s, a classical detoxification family, and an integrative ‘detoxification score’, benchmarked against the known functions of P450 genes, predicted nearly half of D. melanogaster EcKLs are candidate detoxification genes. A targeted PheWAS approach in D. melanogaster also identified novel toxic stress phenotypes associated with genomic and transcriptomic variation in EcKL and P450 genes. These results suggest many Drosophila EcKLs function in detoxification, or at least have key functions in the metabolism of xenobiotics, and additionally identify a number of novel P450 detoxification candidate genes in D. melanogaster. I then broadened the phylogenomic analysis of EcKLs to a manually annotated dataset containing an additional 128 insect genomes and three other arthropod genomes, as well as a number of transcriptome assemblies. Phylogenetic inference suggested insect EcKLs can be grouped into 13 subfamilies that are differentially conserved between insect lineages, and order-specific analyses for Diptera, Lepidoptera and Hymenoptera revealed both highly conserved and highly variable EcKL clades within these taxa. Using phylogenetic comparative methods, EcKL gene family size was found to vary with detoxification-related traits, such as the sizes of classical detoxification gene families, insect diet, and two estimations of ‘detoxification breadth’ (DB), one qualitative and one quantitative. Additionally, the rate of EcKL duplication was found to be low in lineages with small DB—bees and tsetse flies. These results suggest the EcKL gene family functions in detoxification across insects. Building on my previous ‘detoxification score’ analysis, I used the powerful genetic toolkit in D. melanogaster and developmental toxicology assays to test the hypothesis that EcKL genes in the highly dynamic Dro5 clade are involved in the detoxification of selected plant and fungal toxins. Knockout or misexpression of Dro5 genes, particularly CG13659 (Dro5-7), modulated susceptibility to the methylxanthine alkaloid caffeine, and Dro5 knockout also increased susceptibility to kojic acid, a fungal secondary metabolite. These results validate my evolutionary and integrative analyses, and provide the first experimental evidence for the involvement of EcKLs in detoxification processes. Finally, I aimed to find genes encoding ecdysteroid kinases in D. melanogaster, focusing on Wallflower (Wall/CG13813) and Pinkman (pkm/CG1561), orthologs of a known ecdysteroid 22-kinase gene. Wall and pkm null mutant animals developed normally, but misexpression of Wall caused tissue-specific developmental defects, albeit not those consistent with inactivation of the main ecdysteroid hormones, ecdysone and 20-hydroxyecdysone. In addition, my hypothesis that Wall encodes an ecdysteroid 26-kinase was not supported by hypostasis experiments with a loss-of-function allele of the ecdysteroid 26-hydroxylase/carboxylase gene Cyp18a1. Combined with existing expression and regulatory data, these results suggest Wall encodes an ecdysteroid kinase with an unknown substrate, and hint at previously unknown complexity in ecdysteroid signalling and metabolism in D. melanogaster. Overall, this thesis provides a detailed exploration of the functions of the EcKL gene family in insects, showing that these genes comprise a novel detoxification gene family in multiple taxa, and that they may also contribute to understudied aspects of ecdysteroid metabolism in a model insect. This work also demonstrates the power and potential of integrating evolutionary, genomic, transcriptomic and experimental data when characterising genes of unknown function.
  • Item
    Thumbnail Image
    Phylogenomics, molecular evolution and extinction in the adaptive radiation of murine rodents
    Roycroft, Emily Jane ( 2020)
    Adaptive radiation plays a significant role in the generation of biological diversity, and the advent of modern sequencing approaches has unlocked a new genomic perspective on this process. Genomic-scale data from the across the diversity of adaptive radiations can provide unprecedented resolution of the phylogenetic, biogeographic and molecular context of diversification. Murine rodents (Murinae: Rodentia) are a recent and rapid adaptive radiation that make up > 10% of mammal species. Murines have repeatedly colonised new geographic areas and island systems in the Eastern Hemisphere, frequently as a result of overwater transitions. Recurring adaptive radiation, ecological character displacement, and convergent evolution across Murinae make them an ideal model for studying adaptive radiation, especially in the Indo-Australian region. Within broader Murinae, the Hydromyini are a speciose Australo-Papuan radiation that diversified following an overwater colonisation from Sunda to Sahul ca. 8 Ma. Previous multilocus studies did not provide sufficient phylogenetic resolution of the rapid diversification of Hydromyini, and did not adequately sample taxa to reconstruct their complex biogeographic history. In addition to unresolved biogeography, the endemic Australian clade within Hydromyini has suffered the highest rate of recent mammalian extinction in the world. The rapid decline of Australian rodents is thought to be primarily the result of predation by feral cats, combined with other factors such as anthropogenic land clearing. There is little information about the pace of decline in eight species that went extinct on the Australian mainland in the last 150 years, and it is unclear whether these species had suffered longer term declines that predate the arrival of Europeans into Australia in 1788. To resolve these outstanding issues, I develop a novel exon capture approach for murine rodents. Firstly, I investigate the degree of congruent and conflicting phylogenomic signal in a rapid radiation, using genus-level relationships in the Hydromyini as a model example. My results show that in a number of cases, strong conflict is not reflected in branch support metrics obtained using either maximum likelihood or summary coalescent approaches. This result is significant, as it suggests that approaches commonly used to estimate support in phylogenomic data can fail to detect uncertainty in the face of underlying genealogical heterogeneity. Further leveraging this novel exon capture design, I generate a robust phylogenomic tree based on > 350 samples across the Australo-Papuan continent, including extant and recently extinct species in Hydromyini. With these data, I reconstruct the species-level evolutionary and biogeographic history of the Hydromyini across Sahul, recovering numerous examples of overwater colonisation between regions. Consistent with the geomorphological hypothesis that the New Guinea lowlands emerged after the orogeny of the Central Cordillera, I find evidence for increasing ecological opportunity in the Hydromyini from approximately 5 Ma. This first species-level phylogenomic study spanning the entire Sahul region provides a baseline example for future comparative studies that seek to reconstruct the biogeographic drivers of diversification in Sahul at a continental scale. Using exon capture and whole-exome sequencing data from extinct and extant species, I place recently extinct Australian rodents in a phylogenomic context for the first time. I recover no marked evidence of genetic erosion in five extinct species at the time of specimen collection, in comparison to extant species with present-day low allelic diversity. This indicates that the decline of recently extinct Australian rodents occurred extremely rapidly, and its onset likely did not predate European settlement. Additionally, my results taxonomically resurrect a species from extinction, Gould’s mouse (Pseudomys gouldii), which survived as a single island population in Shark Bay, Western Australia (currently classified as P. fieldi). Finally, I generate whole exome data from 38 species in the global radiation of Murinae to examine patterns of positive selection and convergent evolution. I uncovered pervasive positive selection across genes associated with diet, digestion and taste across Murinae, and increased rates of adaptive evolution in carnivores compared to omnivores. Limited evidence for molecular convergence in worm-eating specialists Paucidentomys and Rhynchomys suggests a role for developmental phenotypic control in this striking example of ecological convergence. Broadly, my results indicate that the pronounced ecological and phenotypic shifts that are hallmarks of adaptive radiations may also drive corresponding shifts in the pace and pattern of molecular evolution across the genome. Together, the work in this thesis is fundamental to the understanding of diversification, adaptation and extinction in the Australo-Papuan region, and provides an extensive genomic resource for future studies.
  • Item
    Thumbnail Image
    Taxonomy, ecology and conservation genomics of North-Eastern Australian Earless Dragons (Agamidae: Tympanocryptis spp.)
    Chaplin, Kirilee ( 2018)
    Land clearing and modification of natural habitats is threatening biodiversity globally. In Australia, most native grassland habitats have been heavily modified for agriculture, including cropping and grazing. Grassland specialist species, including earless dragon lizards (Tympanocryptis spp.) in north-eastern Australia, are of conservation concern due to this continued habitat loss and fragmentation. However, the north-eastern Australian group of earless dragons (including the recently described T. condaminensis, T. wilsoni and T. pentalineata) are at significant risk, due to the presence of multiple undescribed cryptic Tympanocryptis lineages within this region. It is imperative that the taxonomy is resolved for these cryptic lineages of conservation concern, so conservation of these species may occur. One of the major challenges for taxonomists in recent times has been the species delimitation of morphologically cryptic taxa. The detection of distinct molecular lineages within cryptic genera has increased exponentially over the past decades with advances in genetic techniques. However, there are discrepancies in the rate and success of detection of cryptic taxa between studies using genetic methods and those using classic external morphology analyses. Therefore, novel integrative methods for species delimitation of cryptic taxa provide an avenue to incorporate multiple lines of evidence, including the application of osteological variation assessment where external morphological assessment fails to distinguish species. I develop a new pipeline integrating genomic data using single nucleotide polymorphisms (SNPs) and osteological geometric morphometric evidence from micro X-ray computed tomography (CT) imagery to assess variation between cryptic lineages for confident species delimitation. Here, I use this novel integrative pipeline to delimit cryptic lineages of earless dragons in north-eastern Australia. Prior to this study, there was evidence of three undescribed species of Tympanocryptis in this region. Using single mitochondrial and nuclear genes along with >8500 SNPs, I assess the evolutionary independence of the three target lineages and several closely related species. I then integrate these phylogenomic data with osteological cranial variation from CT imagery between lineages. I find that the very high levels of genomic differentiation between the three target lineages is also supported by significant osteological differences between lineages. By incorporating multiple lines of evidence for species delimitation, I provide strong support that the three cryptic lineages of Tympanocryptis in north-eastern Australia warrant taxonomic review. Earless dragons are found in most environments across the Australian continent, including a variety of ecological niches, from stony desert to tropical woodland or cracking clay savannah, although each species is often restricted to s certain habitat-type. I investigate the phylogenetic relationships among currently described earless dragons and newly delimited putative species with an assessment of broad biogeographic divisions, focussing on the north-eastern Australian Tympanocryptis group. I found significant structure across the north-eastern Australian lineages, with deep divergence between lineages occurring in the inland Great Artesian Basin region and more coastal Great Dividing Range. Regional diversification is estimated to have occurred in the late Miocene with subsequent Plio-Pleistocene speciations, and divergence and distributions of these species may therefore be reflective of the climate induced grassland-rainforest oscillations during this time. Based on these phylogenetic geographic relationships and the species delimitation from the integrative taxonomy approach, I describe three new species of Tympanocryptis from the cracking clay grasslands of the Darling Riverine Basin (T. darlingensis sp. nov.) and Queensland Central Highlands (T. hobsoni sp. nov.), and the stony open eucalypt woodlands on the Einasleigh Uplands (T. einasleighensis sp. nov.). The revision of these species provides further taxonomic clarity within the Tympanocryptis genus, and is an imperative step in the conservation of the north-eastern Australian earless dragons. These three putative Tympanocryptis species and the other three recently described earless dragons in north-eastern Australia inhabit restricted niches and areas with varying levels of habitat fragmentation and modification, and are therefore of significant conservation concern. However, little is known about these six north-eastern Australian earless dragon species. I utilise genomic methods to investigate population connectivity and genetic structure to determine management units. I then use species distribution modelling (SDM) to assess habitat suitability and fragmentation of each species. I integrate results of these analyses to form conclusions on the distribution and population structure of these earless dragons. I then discuss the major threatening processes and potential conservation strategies. This thesis uses several integrative approaches in resolving the taxonomy and forming conclusions on the conservation management of the north-eastern Australian Tympanocryptis species. This study successfully delimits cryptic lineages, explores the phylogenetic and geographic relationships between species, and provides baseline population genomics and ecological data to be used for conservation assessments and management decisions of earless dragons in north-eastern Australia.
  • Item
    Thumbnail Image
    Evolution and ecology of the Australian Heliozelidae (Adeloidea, Lepidoptera)
    Milla, Elizabeth ( 2018)
    The Heliozelidae (Adeloidea: Lepidoptera) are a family of small, primitive day-flying moths with a worldwide distribution. In recent years, potentially hundreds of new species have been collected around Australia, predominantly in the southwest region of Western Australia. Overall, our observations suggested that many Australian species have evolved independently from other groups in the family. In particular, there is one group of Australian species possessing a unique pollen-carrying abdominal cleft that have established a remarkably close association with species of the Rutaceae (Sapindales) plant genus Boronia. In order to understand the evolution of the Australian Heliozelidae, a robust phylogenetic framework of the Heliozelidae family was required. Additionally, examination of the origins and purpose of the unique morphology of pollen-carrying species and the nature of the associations with their Boronia hosts was crucial to understand their ecological role. Thus, in the first part of this thesis (Chapters Two and Three), I focused on resolving the phylogeny of the worldwide Heliozelidae family and placing the Australian species within it. In Chapter Two, I generated a preliminary phylogeny identifying the major Heliozelidae clades and identify Australia as one of the regions with high undescribed diversity. In Chapter Three, I estimated a fully resolved time-calibrated phylogeny of the major heliozelid clades, with an ancestral range estimation tracing the origins of the family to the Australian region around 96 Mya, during the Late Miocene. In the second part of the thesis (Chapters Four and Five), I focused on the group of Western Australian species that has formed a remarkable association with species in the plant genus Boronia. In Chapter Four, I presented a molecular phylogeny of the Boronia pollinator moths and found preliminary evidence of cospeciation between the moths and their Boronia hosts. In Chapter Five, I described the remarkable active pollination behaviour in three different species of Boronia pollinator, and established the obligate pollination relationship between B. megastigma and its heliozelid pollinator. The findings from this thesis suggest that Heliozelidae play an important role in the Australian environment, exemplified through their close pollination association with the predominantly Australia genus Boronia. Thus, further research into this family of small day-flying moths, which has been poorly studied in Australia until now, is required to better understand their significance.
  • Item
    Thumbnail Image
    Molecular systematics of siphonous green Algae (Bryopsidales, Chlorophyta)
    Cremen, Ma. Chiela ( 2018)
    The evolutionary history of the siphonous green algae (Bryopsidales, Chlorophyta) was investigated using a combination of molecular techniques and phylogenetic inference methods. Analyses of chloroplast genomes of the order revealed the high variability of genome architecture and intron content. Proliferation of nonstandard genes associated with mobile functions (i.e. reverse transcriptase/intron maturase, integrases, etc.) was also observed. Evolutionary relationships of families in the order were investigated by increasing taxon sampling and using chloroplast genome data. The chloroplast phylogenies provided good support for the suborders and most families. Several early branching lineages were also inferred in the Bryopsidineae and Halimedineae. A new classification scheme was proposed for the order, which included the following: establishment of the family Pseudobryopsidaceae fam. nov.; merger of the families Pseudocodiaceae, Rhipiliaceae, and Udoteaceae into a broadly circumscribed Halimedaceae and establishment of tribes for the different lineages found therein; finally, the deep-water genus Johnson-sea-linkia, currently placed in Rhipiliopsis, was reinstated based on the chloroplast phylogenies. Plastid (tufA) and nuclear markers (HSP90) and morphological observations were employed to delimit the Halimeda species found in Western Australia. This facilitated the recognition of Halimeda cuneata and the reinstatement of Halimeda versatilis. Investigation on morphological complexity revealed that simple uniaxial thalli was the ancestral state of the siphonous green algae and was maintained throughout their early evolution. Complex multiaxial thalli evolved afterwards on independent occasions.