School of BioSciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Uncovering the interplay between nutrient availability and cellulose biosynthesis inhibitor activity
    Ogden, Michael ( 2022)
    All plant cells are surrounded by a dynamic, carbohydrate-rich extracellular matrix known as the cell wall. Nutrient availability affects cell wall composition via uncharacterized regulatory mechanisms, and cellulose deficient mutants develop a hypersensitive root response to growth on high concentrations of nitrate. Since cell walls account for the bulk of plant biomass, it is important to understand how nutrients regulate cell walls. This could provide important knowledge for directing fertilizer treatments and engineering plants with higher nutrient use efficiency. The direct effect of nitrate on cell wall synthesis was investigated through growth assays on varying concentrations of nitrate, measuring cellulose content of roots and shoots, and assessing cellulose synthase activity (CESA) using live cell imaging with spinning disk confocal microscopy. A forward genetic screen was developed to isolate mutants impaired in nutrient-mediated cell wall regulation, revealing that cellulose biosynthesis inhibitor (CBI) activity is modulated by nutrient availability. Various non-CESA mutants were isolated that displayed CBI resistance, with the majority of mutations causing perturbation of mitochondria-localized proteins. To investigate mitochondrial involvement, the CBI mechanism of action was investigated using a reverse genetic screen, a targeted pharmacological screen, and -omics approaches. The results generated suggest that CBI-induced cellulose inhibition is due to off-target effects. This provides the groundwork to investigate uncharacterized processes of CESA regulation and adds valuable knowledge to the understanding of CBI activity, which could be harnessed to develop new and improved herbicides.
  • Item
    Thumbnail Image
    Role of phosphorylation in regulating secondary cell wall cellulose synthesis in Arabidopsis
    XU, HUIZHEN ( 2022)
    Plant secondary cell walls (SCWs) are important for plant growth and development as the vascular tissues and fibers support plants with water and mineral transport. Cellulose is the major component of SCWs, and its synthesis is a highly complex process regulated by transcription factors as well as post-translational modifications. Cellulose synthase (CESA) 4, 7 and 8 are essential enzymes that catalyze the synthesis of SCW cellulose and form a cellulose synthase complex (CSC) that is active at the plasma membrane. The CSCs move at the plasma membrane; a process driven by the catalytic activity of the CESAs. The behaviour of the CSC is an important character of cellulose synthesis and SCW patterning. Protein phosphorylation is arguably the most common post-translational modification in many cells and affects CESA behaviour during primary wall synthesis. However, how SCW CESA phosphorylation contributes to secondary wall production is not understood well. Chapter 1 provides a brief overview about plant cell wall cellulose synthesis, especially secondary cell wall biosynthesis. There are five main aspects discussed, including secondary cell wall patterns, transcriptional regulation during SCW formation, CESA structures and the function of each domain, the effects of phosphorylation on cellulose synthesis, and environmental effects on SCW production. In Chapter 2, proteomic and phospho-proteomic changes were characterized during the transition from primary to secondary wall synthesis using the VASCULAR-RELATED NAC-DOMAIN7 (VND7)-inducible system. A vast number of phosphorylation sites, especially in SCW-related proteins, were detected. The phosphorylation changes of putative and selected phosphorylation sites in primary and secondary cell wall CESAs were analyzed in detail. This phospho-proteomic dataset provides more insights into phospho-protein changes during the process of SCW biosynthesis. In Chapter 3, phosphorylation sites in each SCW CESA were analyzed and mutated to examine if and how phosphorylation regulates SCW biosynthesis. Most of the selected phospho-mutants, either phospho-null or phospho-mimic versions, restored the phenotype of SCW cesa mutants, and did not show significant differences from wild type control. However, one conserved phosphorylation sites in CESA4, S374, did affect SCW biosynthesis, as single-site phospho-null mutant (CESA4S374A) showed dwarf phenotype with deformed xylem vessels, similar to cesa4 mutant. Sequencing and qRT-PCR confirmed the correct amino acid substitutions and gene expression, respectively. Further, both bioinformatic analysis of protein structure and sequence alignments indicated that S374 in CESA4 was likely to be externally exposed and phosphorylated. Thus, phosphorylation in the position of S374 in CESA4 potentially works to positively regulate SCW cellulose biosynthesis. In Chapter 4, an immunoprecipitation approach of a YFP tagged CESAS7 in the VND7-inducible system was used to pull out potential proteins interacting with SCW CESAs, focusing on protein kinases. Thirteen highly enriched kinases were in this way found to potentially associate with the CESAs. One interesting but unknown receptor-like kinase, AT1G09440, may potentially play a role in SCW formation. Subcellular localization analysis further showed that this protein kinase was secreted from the Golgi to the plasma membrane where it is likely to have its main function. In Chapter 5, the conclusion for this research and some future work directions are proposed.
  • Item
    Thumbnail Image
    Carbon Supply and the Regulation of Primary Cell Wall Synthesis in Arabidopsis thaliana
    Verbancic, Jana ( 2021)
    Cellulose is the most abundant biopolymer on Earth and cell wall (CW) synthesis is one of the major carbon consumers in the plant cell. Structure and several interaction partners of plasma membrane (PM)-bound cellulose synthase (CESA) complexes, CSCs, have been studied extensively, but much less is understood about the signals that activate and translocate CESAs to the PM and how exactly cellulose synthesis is being regulated during the diel cycle. The literature describes CSC regulation possibilities through interactions with accessory proteins upon stress conditions (e.g. CC1), post-translational modifications that regulate CSC speed and their possible anchoring in the PM (e.g. with phosphorylation and S-acylation, respectively). In this thesis, 13CO2 labeling and imaging techniques were employed in the same Arabidopsis seedling growth system to elucidate how and when new carbon is incorporated into cell wall (CW) sugars and UDP-glucose, and to follow CSC behavior during the diel cycle. Additionally, an ubiquitination analysis was performed to investigate a possible mechanism to affect CSC trafficking to and/or from the PM. Carbon is being incorporated into CW glucose at a 3-fold higher rate during the light period in comparison to the night in wild-type seedlings. Furthermore, CSC density at the PM, as an indication of active cellulose synthesizing machinery, is increasing in the light and falling during the night, showing that CW biosynthesis is more active in the light. Therefore, CW synthesis might be regulated by the carbon status of the cell. This regulation is broken in the starchless pgm mutant where light and dark carbon incorporation rates into CW glucose are similar, possibly due to the high soluble sugar content in pgm during the first part of the night. Strikingly, pgm CSC abundance at the PM is constantly low during the whole diel cycle, indicating little or no cellulose synthesis, but can be restored with exogenous sucrose or a longer photoperiod. Ubiquitination was explored as a possible regulating mechanism for translocation of primary CW CSCs from the PM and several potential ubiquitination sites have been identified. The approach in this thesis enabled to study cellulose/CW synthesis from different angles but in the same growth system, allowing direct comparison of those methodologies, which could help understand the relationship between the amount of available carbon in a plant cell and the cells capacity to synthesize cellulose/CW. Understanding which factors contribute to cellulose synthesis regulation and addressing those fundamental questions can provide essential knowledge to manage the need for increased crop production.