School of BioSciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The physiological effects of artificial light at night on the Australian black field cricket
    Durrant, Joanna ( 2018)
    The presence of artificial light at night (ALAN) is one of the fastest growing, most pervasive and, until recently, under-appreciated forms of global pollution. Current ALAN levels in urban environments are associated with changes to animal behaviour, dramatic shifts in the timing of life history events, reductions in individual fitness and disrupted physiological processes, including immune function. This thesis explores the physiological effects of ecologically relevant levels of ALAN on a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. In Chapter 1, I reviewed the literature with a particular emphasis on the physiological effects of ALAN, including growth, survival, reproductive success, and immune function. I also speculate as to the potential mechanistic links behind these ALAN induced biological effects. In Chapter 2, I explored experimentally the effects of ecologically relevant levels of ALAN (1, 10 and 100 lux) on life history and fitness traits of the black field cricket. Under controlled laboratory conditions, I reared crickets from egg to adult in an environment with either no ALAN (0 lux) or one of the above dim-ALAN intensities and assessed the consequences of ALAN for growth, survival and reproductive success. I demonstrated that egg hatch, adult survival and reproductive measures were largely unaffected by the presence of ALAN, however juvenile development time was longer and adults were larger when crickets were exposed to any light at night (1, 10 or 100 lux). In Chapter 3, I examined the effects of ALAN (1, 10 and 100 lux) on three key measures of adult immune function (haemocyte concentration, lytic activity, and phenoloxidase activity). The presence of any ALAN (1, 10 or 100 lux) had a clear negative effect on the cellular immune response. Specifically, individuals exposed to any ALAN were unable to increase their haemocyte concentration in response to a stressor challenge. In Chapter 4, I investigated a novel method for the measurement of circulating melatonin in small samples of cricket haemolymph using high-performance liquid chromatography tandem mass spectrometry, with methyl tert-butyl ether (MTBE)/ethyl acetate as an extraction agent. The calibration curve for melatonin was linear in the range of 0.25 and 10 pM (R2 = 0.999), and the limit of detection was 0.25pM. When applied to a set of pilot data from crickets reared under different ALAN environments (0, 1, 10, and 100 lux), the results were however inconclusive, due to small sample sizes. In Chapter 5, I discuss the significance of these findings and their ecological implications. My thesis advances our understanding of the biological ef fects of ALAN for invertebrates, a key taxon contributing to ecological community structure and composition. It is one of the first set of studies to simultaneously investigate multiple traits in the same individuals exposed to lifelong ALAN, and to assess changes in immune function throughout their adult life. Combined, the results presented demonstrate a disruption to physiological processes, and highlight the potential for ALAN to alter the phenology of communities and reduce the overall fitness of individuals.
  • Item
    Thumbnail Image
    Evaluating uncertainty when applying the trait-based protocol for climate-change vulnerability in freshwater crayfish
    Hossain, Md Anwar ( 2018)
    Climate change has been recognized as one of the greatest threats to the persistence of biodiversity. Several approaches have been used to assess species’ vulnerability to climate change such as correlative niche models, mechanistic models, trait-based models, and combination of these model outputs. The trait-based protocol for climate-change vulnerability assessment (TVA) is increasingly used in a variety of taxa due to its suitability for assessing data-poor species. Yet, TVA has thus far remained unevaluated for potential uncertainties. In TVA, climate change-relevant traits are selected and scored against three dimensions: sensitivity, adaptive capacity, and exposure to climate change. In this thesis, I applied TVA to assess climate-change vulnerability in a data-poor invertebrate taxon (freshwater crayfish; 574 species) and explored the potential sources of uncertainty in TVA. I found that climate-change vulnerable crayfish are distributed globally with high concentrations in the USA and Australia, reflecting global pattern of crayfish richness. Ninety-one species are already identified as vulnerable to climate change in the IUCN Red List. I identified hotspots of species vulnerable to climate change that require additional conservation action. I assessed multiple sources of uncertainty including trait selection, the use of arbitrary thresholds for quantitative traits, and climate model choices. I quantified that in TVA, it is likely that as more trait variables are included in the study, more species are identified as vulnerable to climate change. The use of arbitrary thresholds in TVA was relatively robust to produce species’ vulnerability ranking. However, I found that the number of species identified as vulnerable to climate change varied greatly (79-156) depending on which individual climate model was used. TVAs are an effective tool to understand climate change vulnerabilities of data-poor species, however, assessors applying the protocol should be aware of these uncertainty sources and perform sensitivity analyses to better understand their impact on TVA results.