School of BioSciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Speciation and secondary contact in a colourful agamid, Ctenophorus decresii
    Dong, Caroline Mei-Xu ( 2019)
    Colour polymorphism, the co-existence of multiple heritable colour morphs within an interbreeding population, is thought to promote rapid phenotypic evolution and speciation. This is based on the importance of colour signals in reproductive isolation in combination with the underlying genetic architecture of polymorphism, where morphs are predicted to be governed by few genes of major effect. This prediction is supported by empirical data and stems from how colour morphs often differ in suites of co-adapted traits. During secondary contact between populations that differ in morphs, there is expected to be a high probability of genetic incompatibilities between morphs due to a breakdown of adaptive genetic correlations. Furthermore, colour signal divergence may also be accompanied by changes in behaviour and/or mating preferences leading to incompatibilities between populations which differ in morphs. These factors together may facilitate the formation of reproductive isolation and ultimately lead to speciation. In this thesis, I investigated divergence and the outcome of secondary contact between lineages of the tawny dragon, Ctenophorus decresii, which differ in morph number and type. Ctenophorus decresii is a sexually dimorphic agamid lizard endemic to South Australia, and comprises two genetically distinct and geographically structured lineages: northern and southern. I tested for differences in colour vision between the lineages, which differ in a sexual signal, male throat coloration, particularly in the absence or presence of ultraviolet (UV) reflectance. The northern lineage is colour polymorphic with four discrete throat morphs which lack significant UV reflectance: orange, yellow, orange-yellow (orange centre surrounded by yellow), and grey. Southern lineage males are monomorphic with blue throats and a strong UV reflectance peak. Male throat coloration is an important intraspecific sexual signal, as it is emphasised in territorial and courtship displays. I investigated whether lineages differ in visual sensitivity to UV wavelengths by measuring retinal opsin protein expression of four cone opsin genes (SWS1, SWS2, RH2, LWS) using droplet digital PCR. I found that lineages did not differ in gene expression of the four opsins and discussed this in the context of conserved visual sensitives in terrestrial systems. The lineages meet in a contact zone where multi-locus genetic data suggested the presence of hybrids and potential barriers to gene flow. Using extensive field surveys, male phenotype data, genomic single nucleotide polymorphisms (SNPs), and a mitochondrial (mtDNA) marker, I investigated the outcome of secondary contact between the lineages. Furthermore, I captive-bred pure and first generation (F1) hybrid offspring to characterise colour traits independent of exogenous selection. I found that the contact zone is narrow and several generations old with no parental forms or F1 hybrids present. The northern mtDNA haplotype was prevalent in hybrids, and there were high frequencies of backcrossing to the northern lineage but not to the southern lineage, indicating genetic incompatibilities. The northern throat polymorphism was maintained, without any loss of morphs, whereas the southern throat morph was absent. This contrasted with the more intermediate throat phenotype of captive-bred F1 hybrids, particularly in ultraviolet reflectance, suggesting strong selection for the northern throat phenotype within the contact zone. The viability and fitness of F1 hybrids have consequences for contact zone dynamics, and ultimately whether species boundaries are eroded or maintained. I performed pure and reciprocal cross F1 hybrids in a laboratory setting and measured parental reproductive traits and offspring fitness traits. I found that northern females have a higher reproductive output with more, larger clutches per breeding season and lower embryonic mortality. Although pure and hybrid offspring did not differ in individual fitness traits, hybrids produced from a combination of northern females and southern males exhibited higher fitness in more categories (i.e. growth rate, bite force, sprint speed). These factors in combination may contribute to the prevalence of northern lineage mtDNA haplotypes in the contact zone. Finally, I taxonomically separated the northern and southern lineages of C. decresii sensu lato on the basis of differentiation in morphology and male coloration, genetic divergence with restricted gene flow, and geographic structuring. This revision results in C. decresii sensu stricto (previously southern lineage) and C. modestus (previously northern lineage). I evaluated morphological traits of the type specimen of Amphibolurus modestus (Ahl 1926), previously a synonym of C. decresii sensu lato, and determined that it represented a specimen of the northern lineage. Therefore, I formally re-instated and re-described Ctenophorus modestus (Ahl 1926). The addition of this species to the C. decresii species group, which now comprises six species, supports the notion that geographic divergence in male coloration is an important component to speciation in this group.