Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    An immunohistochemical perspective of PPARβ and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours
    Ahmed, N ; Riley, C ; Quinn, MA (NATURE PUBLISHING GROUP, 2008-04-22)
    Peroxisome proliferator-activated receptor beta (PPAR beta) is a member of the nuclear hormone receptor family and is a ligand-activated transcription factor with few known molecular targets including 3-phosphoinositide-dependent protein kinase 1(PDK1). In view of the association of PPAR beta and PDK1 with cancer, we have examined the expression of PPAR beta and PDK1 in normal ovaries and different histological grades of ovarian tumours. Normal ovaries, benign, borderline, grades 1, 2 and 3 ovarian tumours of serous, muciuous, endometrioid, clear cell and mixed subtypes were analysed by immunohistochemistry for PPAR beta and PDK1 expression. All normal ovarian tissues, benign, borderline and grade 1 tumours showed PPAR beta staining localised in the epithelium and stroma. Staining was predominantly nuclear, but some degree of cytoplasmic staining was also evident. Approximately 20% of grades 2 and 3 tumours lacked PPAR beta staining, whereas the rest displayed some degree of nuclear and cytoplasmic staining of the scattered epithelium and stroma. The extent of epithelial and stromal PPAR beta staining was significantly different among the normal and the histological grades of tumours (chi(2)=59.25, d.f.=25, P<0.001; chi(2)=64.48, d.f.=25, P<0.001). Significantly different staining of PPAR beta was observed in the epithelium and stroma of benign and borderline tumours compared with grades 1, 2 and 3 tumours (chi(2)=11.28, d.f.=4, P<0.05; chi(2)=16.15, d.f.=4, P<0.005). In contrast, PDK1 immunostaining was absent in 9 out of 10 normal ovaries. Weak staining for PDK1 was observed in one normal ovary and 40% of benign ovarian tumours. All borderline and malignant ovarian tumours showed positive cytoplasmic and membrane PDK1 staining. Staining of PDK1 was confined to the epithelium and the blood vessels, and no apparent staining of the stroma was evident. Significantly different PDK1 staining was observed between the benign/borderline and malignant ovarian tumours (chi(2)=22.45, d.f.=5, P<0.001). In some borderline and high-grade tumours, staining of the reactive stroma was also evident. Our results suggest that unlike the colon, the endometrial, head and neck carcinomas, overexpression of PPAR beta does not occur in ovarian tumours. However, overexpression of PDK1 was evident in borderline and low- to high-grade ovarian tumours and is consistent with its known role in tumorigenesis.
  • Item
    Thumbnail Image
    Ascites induces modulation of α6β1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma
    Ahmed, N ; Riley, C ; Oliva, K ; Rice, G ; Quinn, M (NATURE PUBLISHING GROUP, 2005-04-25)
    Interactions between cancer cells and the surrounding medium are not fully understood. In this study, we demonstrate that ascites induces selective changes in the expression of integrins and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) in ovarian cancer cells. We hypothesise that this change of integrin and uPA/uPAR expression triggers signalling pathways responsible for modulating phenotype-dependent functional changes in ovarian cancer cells. Human ovarian surface epithelial (HOSE) cell lines and epithelial ovarian cancer cell lines were treated with ascites for 48 h. Ascites induced upregulation of alpha6 integrin, without any change in the expression of alphav, beta1 and beta4 integrin subunits. Out of the four ovarian cancer cell lines studied, ascites induced enhancement in the expression of uPA/uPAR in the more invasive OVCA 433 and HEY cell lines without any change in the noninvasive OVHS1 and moderately invasive PEO.36 cell lines. On the other hand, no change in the expression of alpha6 integrin or uPAR, in response to ascites, was observed in HOSE cells. In response to ascites, enhancement in proliferation and in adhesion was observed in all four ovarian cancer cell lines studied. In contrast, no significant increase in proliferation or adhesion by ascites was observed in HOSE cells. Ascites-induced expression of uPA/uPAR correlated with the increased invasiveness of HEY and OVCA 433 cell lines but was not seen in OVHS1, PEO.36 and HOSE cell lines. Upregulation of alpha6 integrin and uPA/uPAR correlated with the activation of Ras and downstream Erk pathways. Ascites-induced activation of Ras and downstream Erk can be inhibited by using inhibitory antibodies against alpha6 and beta1 integrin and uPAR, consistent with the inhibition of proliferation, adhesion and invasive functions of ovarian cancer cell lines. Based on these findings, we conclude that ascites can induce selective upregulation of integrin and uPA/uPAR in ovarian cancer cells and these changes may modulate the functions of ovarian carcinomas.
  • Item
    Thumbnail Image
    Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma
    Zhang, GY ; Ahmed, N ; Riley, C ; Oliva, K ; Barker, G ; Quinn, MA ; Rice, GE (NATURE PUBLISHING GROUP, 2005-01-17)
    The peroxisome proliferator-activated receptors (PPARs) belong to a subclass of nuclear hormone receptor that executes important cellular transcriptional functions. Previous studies have demonstrated the expression of PPARgamma in several tumours including colon, breast, bladder, prostate, lung and stomach. This study demonstrates the relative expression of PPARgamma in normal ovaries and different pathological grades of ovarian tumours of serous, mucinous, endometrioid, clear cell and mixed subtypes. A total of 56 ovarian specimens including 10 normal, eight benign, 10 borderline, seven grade 1, nine grade 2 and 12 grade 3 were analysed using immunohistochemistry. Immunoreactive PPARgamma was not expressed in normal ovaries. Out of eight benign and 10 borderline tumours, only one tumour in each group showed weak cytoplasmic PPARgamma expression. In contrast, 26 out of 28 carcinomas studied were positive for PPARgamma expression with staining confined to cytoplasmic and nuclear regions. An altered staining pattern of PPARgamma was observed in high-grade ovarian tumours with PPARgamma being mostly localized in the nuclei with little cytoplasmic immunoreactivity. On the other hand, predominant cytoplasmic staining was observed in lower-grade tumours. Significantly increased PPARgamma immunoreactivity was observed in malignant ovarian tumours (grade 1, 2 and 3) compared to benign and borderline tumours (chi2 = 48.80, P < 0.001). Western blot analyses showed significant elevation in the expression of immunoreactive PPARgamma in grade 3 ovarian tumours compared with that of normal ovaries and benign ovarian tumours (P < 0.01). These findings suggest an involvement of PPARgamma in the onset and development of ovarian carcinoma and provide an insight into the regulation of this molecule in the progression of the disease.
  • Item
    Thumbnail Image
    Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer
    Ahmed, N ; Barker, G ; Oliva, KT ; Hoffmann, P ; Riley, C ; Reeve, S ; Smith, AL ; Kemp, BE ; Quinn, MA ; Rice, GE (NATURE PUBLISHING GROUP, 2004-07-05)
    Screening for specific biomarkers of early-stage detection of ovarian cancer is a major health priority due to the asymptomatic nature and poor survival characteristic of the disease. We utilised two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in the serum of ovarian cancer patients that may be useful as biomarkers of this disease. In this study, 38 ovarian cancer patients at different pathological grades (grade 1 (n=6), grade 2 (n=8) and grade 3 (n=24)) were compared to a control group of eight healthy women. Serum samples were treated with a mixture of Affigel-Blue and protein A (5 : 1) for 1 h to remove high abundance protein (e.g. immunoglobulin and albumin) and were displayed using 11 cm, pH 4-7 isoelectric focusing strips for the first dimension and 10% acrylamide gel electrophoresis for the second dimension. Protein spots were visualised by SYPRO-Ruby staining, imaged by FX-imager and compared and analysed by PDQuest software. A total of 24 serum proteins were differentially expressed in grade 1 (P<0.05), 31 in grade 2 (P<0.05) and 25 in grade 3 (P<0.05) ovarian cancer patients. Six of the protein spots that were significantly upregulated in all groups of ovarian cancer patients were identified by nano-electrospray quadrupole quadrupole time-of-flight mass spectrometry (n-ESIQ(q)TOFMS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOFMS) as isoforms of haptoglobin-1 precursor (HAP1), a liver glycoprotein present in human serum. Further identification of the spots at different pathological grades was confirmed by Western blotting using monoclonal antibody against a haptoglobin epitope contained within HAP1. Immunohistochemical localisation of HAP1-like activity was present in malignant ovarian epithelium and stroma but strong immunostaining was present in blood vessels, areas with myxomatous stroma and vascular spaces. No tissue localisation of HAP1-like immunoreactivity was observed in normal ovarian surface epithelium. These data highlight the need to assess circulating concentration of HAP1 in the serum of ovarian cancer patients and evaluate its potential as a biomarker in the early diagnosis of ovarian cancer.
  • Item
    Thumbnail Image
    Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-β1 integrin complex in colon cancer cells
    Ahmed, N ; Oliva, K ; Wang, Y ; Quinn, M ; Rice, G (NATURE PUBLISHING GROUP, 2003-07-21)
    Cancer invasion is regulated by cell surface proteinases and adhesion molecules. Interaction between specific cell surface molecules such as urokinase plasminogen activator receptor (uPAR) and integrins is crucial for tumour invasion and metastasis. In this study, we examined whether uPAR and beta1 integrin form a functional complex to mediate signalling required for tumour invasion. We assessed the expression of uPAR/beta1 integrin complex, Erk signalling pathway, adhesion, uPA and matrix metalloproteinase (MMP) expression, migration/invasion and matrix degradation in a colon cancer cell line in which uPAR expression was modified. Antisense inhibition of the cell surface expression of uPAR by 50% in human colon carcinoma HCT116 cells (A/S) suppressed Erk-MAP kinase activity by two-fold. Urokinase plasminogen activator receptor antisense treatment of HCT116 cells was associated with a 1.3-fold inhibition of adhesion, approximately four-fold suppression of HMW-uPA secretion and inhibition of pro-MMP-9 secretion. At a functional level, uPAR antisense resulted in a four-fold decline in migration/invasion and abatement of plasmin-mediated matrix degradation. In empty vector-transfected cells (mock), uPA strongly elevated basal Erk activation. In contrast, in A/S cells, uPA induction of Erk activation was not observed. Urokinase plasminogen activator receptor associated with beta1 integrin in mock-transfected cells. Disruption of uPAR-beta1 integrin complex in mock-transfected cells with a specific peptide (P25) inhibited uPA-mediated Erk-MAP kinase pathway and inhibited migration/invasion and plasmin-dependent matrix degradation through suppression of pro-MMP-9/MMP-2 expression. This novel paradigm of uPAR-integrin signalling may afford opportunities for alternative therapeutic strategies for the treatment of cancer.
  • Item
    Thumbnail Image
    Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden
    Abubaker, K ; Latifi, A ; Luwor, R ; Nazaretian, S ; Zhu, H ; Quinn, MA ; Thompson, EW ; Findlay, JK ; Ahmed, N (BMC, 2013-03-27)
    Over 80% of women diagnosed with advanced-stage ovarian cancer die as a result of disease recurrence due to failure of chemotherapy treatment. In this study, using two distinct ovarian cancer cell lines (epithelial OVCA 433 and mesenchymal HEY) we demonstrate enrichment in a population of cells with high expression of CSC markers at the protein and mRNA levels in response to cisplatin, paclitaxel and the combination of both. We also demonstrate a significant enhancement in the sphere forming abilities of ovarian cancer cells in response to chemotherapy drugs. The results of these in vitro findings are supported by in vivo mouse xenograft models in which intraperitoneal transplantation of cisplatin or paclitaxel-treated residual HEY cells generated significantly higher tumor burden compared to control untreated cells. Both the treated and untreated cells infiltrated the organs of the abdominal cavity. In addition, immunohistochemical studies on mouse tumors injected with cisplatin or paclitaxel treated residual cells displayed higher staining for the proliferative antigen Ki67, oncogeneic CA125, epithelial E-cadherin as well as cancer stem cell markers such as Oct4 and CD117, compared to mice injected with control untreated cells. These results suggest that a short-term single treatment of chemotherapy leaves residual cells that are enriched in CSC-like traits, resulting in an increased metastatic potential. The novel findings in this study are important in understanding the early molecular mechanisms by which chemoresistance and subsequent relapse may be triggered after the first line of chemotherapy treatment.
  • Item
    Thumbnail Image
    Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary
    Samardzija, C ; Quinn, M ; Findlay, JK ; Ahmed, N (BMC, 2012-11-21)
    Epithelial ovarian cancer (EOC) remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed 'cancer initiating cells' or 'cancer stem cells (CSCs)' have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.
  • Item
    Thumbnail Image
    Neuronal transcription factor Brn-3a(l) is over expressed in high-grade ovarian carcinomas and tumor cells from ascites of patients with advanced-stage ovarian cancer
    Ahmed, N ; Latifi, A ; Riley, CB ; Findlay, JK ; Quinn, MA (BMC, 2010-07-29)
    OBJECTIVES: In view of the recent association of Brn-3 transcription factors with neuroblastomas, cervical, breast, and prostate cancers we examined the expression of Brn-3a(l) in normal ovaries and in different histological grades of ovarian tumors. The expression of Brn-3a(l) was also evaluated in normal ovarian and cancer cell lines and tumor cells isolated from the ascites of advanced-stage ovarian cancer patients. METHODS: Normal ovaries, benign, borderline, grades 1, 2 and 3 ovarian tumors were analyzed by immunohistochemistry for Brn-3a(l) expression. A total of 46 ovarian specimens were included in the study. Immunofluorescence was used to investigate the expression of Brn-3a in normal ovarian and cancer cell lines. Brn-3a(l) expression was also evaluated by Western blot in tumor cells isolated from ascites of advanced-stage ovarian cancer patients and also in ovarian cancer cell lines. RESULTS: Nearly 12% of normal and benign ovarian tissues and 57% of borderline ovarian tumors were positive for epithelial Brn-3a(l) expression. Stromal staining was higher and it constituted 40% of normal non-cancerous ovaries compared to 50 and 86% in benign and borderline tumors. On the other hand, 85-100% of grades 1, 2 & 3 ovarian tumors demonstrated nuclear and cytoplasmic Brn-3a(l) staining in the epithelium. Stromal staining in grades1, 2 and 3 tumors constituted 71-88% of total staining. Overall, immunoreactive Brn-3a was present in all grades of ovarian tumors. The extent of epithelial and stromal Brn-3a staining was significantly different between the normal and histological grades of tumors (epithelial-chi2 = 41.01, df = 20, P = 0.004, stromal-chi2 = 24.66. df = 15, P = 0.05). The extent of epithelial staining was significantly higher in grades 1 and 2 ovarian tumors compared to normal ovaries and benign ovarian tumors (p < 0.05). In parallel, stromal staining was significantly higher in grade 3 tumors compared to normal ovaries (p < 0.05). In addition, cytoplasmic and nuclear Brn-3a expression was evident in ovarian cancer cell lines while no such expression was observed in SV40 antigen immortalized normal ovarian cell lines. CONCLUSION: These data suggest that like other cancers, Brn-3a(l) expression is enhanced in ovarian tumors and its expression is consistent with its known role in inhibiting apoptosis and enhancing tumorigenesis. Specific targeting of Brn-3a may provide a useful strategy for regulating multiple tumor related genes involved with ovarian carcinomas.
  • Item
    Thumbnail Image
    Isolation and Characterization of Tumor Cells from the Ascites of Ovarian Cancer Patients: Molecular Phenotype of Chemoresistant Ovarian Tumors
    Latifi, A ; Luwor, RB ; Bilandzic, M ; Nazaretian, S ; Stenvers, K ; Pyman, J ; Zhu, H ; Thompson, EW ; Quinn, MA ; Findlay, JK ; Ahmed, N ; Hawkins, SM (PUBLIC LIBRARY SCIENCE, 2012-10-08)
    Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
  • Item
    Thumbnail Image
    Granulocyte colony-stimulating factor receptor signalling via Janus kinase 2/signal transducer and activator of transcription 3 in ovarian cancer
    Kumar, J ; Fraser, FW ; Riley, C ; Ahmed, N ; McCulloch, DR ; Ward, AC (NATURE PUBLISHING GROUP, 2014-01-07)
    BACKGROUND: Ovarian cancer remains a major cause of cancer mortality in women, with only limited understanding of disease aetiology at the molecular level. Granulocyte colony-stimulating factor (G-CSF) is a key regulator of both normal and emergency haematopoiesis, and is used clinically to aid haematopoietic recovery following ablative therapies for a variety of solid tumours including ovarian cancer. METHODS: The expression of G-CSF and its receptor, G-CSFR, was examined in primary ovarian cancer samples and a panel of ovarian cancer cell lines, and the effects of G-CSF treatment on proliferation, migration and survival were determined. RESULTS: G-CSFR was predominantly expressed in high-grade serous ovarian epithelial tumour samples and a subset of ovarian cancer cell lines. Stimulation of G-CSFR-expressing ovarian epithelial cancer cells with G-CSF led to increased migration and survival, including against chemotherapy-induced apoptosis. The effects of G-CSF were mediated by signalling via the downstream JAK2/STAT3 pathway. CONCLUSION: This study suggests that G-CSF has the potential to impact on ovarian cancer pathogenesis, and that G-CSFR expression status should be considered in determining appropriate therapy.