Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Very preterm children at risk for developmental coordination disorder have brain alterations in motor areas
    Dewey, D ; Thompson, DK ; Kelly, CE ; Spittle, AJ ; Cheong, JLY ; Doyle, LW ; Anderson, PJ (WILEY, 2019-09)
    AIM: Brain alterations in very preterm children at risk for developmental coordination disorder were investigated. METHODS: Infants born very preterm with gestation age <30 weeks or birthweight <1250 g were recruited from Royal Women's Hospital Melbourne from 2001 to 2003. Volumetric imaging was performed at term equivalent age; at seven years, volumetric imaging and diffusion tensor imaging were performed. At seven years, 53 of 162 children without cerebral palsy had scores ≤16th percentile on the Movement Assessment Battery for Children-Second Edition and were considered at risk for developmental coordination disorder. RESULTS: At term equivalent age, smaller brain volumes were found for total brain tissue, cortical grey matter, cerebellum, caudate accumbens, pallidum and thalamus in children at risk for developmental coordination disorder (p < 0.05); similar patterns were present at seven years. There was no evidence for catch-up brain growth in at-risk children. At seven years, at-risk children displayed altered microstructural organisation in many white matter tracts (p < 0.05). CONCLUSION: Infants born very preterm at risk for developmental coordination disorder displayed smaller brain volumes at term equivalent age and seven years, and altered white matter microstructure at seven years, particularly in motor areas. There was no catch-up growth from infancy to seven years.
  • Item
    Thumbnail Image
    Brain structure and neurological and behavioural functioning in infants born preterm
    Kelly, CE ; Thompson, DK ; Cheong, JLY ; Chen, J ; Olsen, JE ; Eeles, AL ; Walsh, JM ; Seal, ML ; Anderson, PJ ; Doyle, LW ; Spittle, AJ (WILEY, 2019-07)
    AIM: To examine: (1) relationships between brain structure, and concurrently assessed neurological and behavioural functioning, in infants born preterm at term-equivalent age (TEA; approximately 38-44wks); and (2) whether brain structure-function relationships differ between infants born very (24-29wks) and moderate-late (32-36wks) preterm. METHOD: A total of 257 infants (91 very preterm, 166 moderate-late preterm; 120 males, 137 females) had structural magnetic resonance imaging (MRI) and neurological and behavioural assessments (Prechtl's general movements assessment, Neonatal Intensive Care Unit Network Neurobehavioral Scale [NNNS] and Hammersmith Neonatal Neurological Examination [HNNE]). Two hundred and sixty-three infants (90 very preterm, 173 moderate-late preterm; 131 males, 132 females) had diffusion MRI and assessments. Associations were investigated between assessment scores and global brain volumes using linear regressions, regional brain volumes using Voxel-Based Morphometry, and white matter microstructure using Tract-Based Spatial Statistics. RESULTS: Suboptimal scores on some assessments were associated with lower fractional anisotropy and/or higher axial, radial, and mean diffusivities in some tracts: NNNS attention and reflexes, and HNNE total score and tone, were associated with the corpus callosum and optic radiation; NNNS quality of movement with the corona radiata; HNNE abnormal signs with several major tracts. Brain structure-function associations generally did not differ between the very and moderate-late preterm groups. INTERPRETATION: White matter microstructural alterations may be associated with suboptimal neurological and behavioural performance in some domains at TEA in infants born preterm. Brain structure-function relationships are similar for infants born very preterm and moderate-late preterm. WHAT THIS PAPER ADDS: Brain volume is not related to neurological/behavioural function in infants born preterm at term. White matter microstructure is related to some neurological/behavioural domains at term. Brain-behaviour relationships are generally similar for infants born very preterm and moderate-late preterm.
  • Item
    Thumbnail Image
    White matter microstructure is associated with language in children born very preterm
    Murner-Lavanchy, IM ; Kelly, CE ; Reidy, N ; Doyle, LW ; Lee, KJ ; Inder, T ; Thompson, DK ; Morgan, AT ; Anderson, PJ (ELSEVIER SCI LTD, 2018)
    Very preterm birth is associated with altered white matter microstructure and language difficulties, which may compromise communication, social function and academic achievement, but the relationship between these two factors is unclear. The aim of this study was to explore associations between white matter microstructure and language domains of semantics, grammar and phonological awareness at 7-years of age on a whole-brain level and within the arcuate fasciculus, an important language pathway, in very preterm and term-born children. Language was assessed in 145 very preterm-born (<30 weeks' gestation and/or <1250 g birth weight) and 33 term-born children aged 7 years. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), axon orientation dispersion and axon density were estimated from diffusion magnetic resonance images also obtained at 7 years. The correlation between diffusion values and language was assessed using Tract-Based Spatial Statistics (TBSS). The arcuate fasciculus was delineated using constrained spherical deconvolution tractography and diffusion parameters from this tract were related to language measures using linear regression. While there was evidence for widespread associations between white matter microstructure and language, there was little evidence of differences in these associations between very preterm and term-born groups. TBSS analyses revealed that higher FA and lower AD, RD, and MD in major fibre tracts, including those subserving language, were associated with better semantic, grammar and phonological awareness performance. Higher axon density in widespread fibre tracts was also associated with better semantic performance. The tractography analyses of the arcuate fasciculus showed some evidence for associations between white matter microstructure and language outcomes. White matter microstructural organisation in widespread fibre tracts, including language-relevant pathways, was associated with language performance in whole-brain and tract-based analyses. The associations were similar for very preterm and term-born groups, despite very preterm children performing more poorly across language domains.
  • Item
    Thumbnail Image
    Contribution of Brain Size to IQ and Educational Underperformance in Extremely Preterm Adolescents
    Cheong, JLY ; Anderson, PJ ; Roberts, G ; Burnett, AC ; Lee, KJ ; Thompson, DK ; Molloy, C ; Wilson-Ching, M ; Connelly, A ; Seal, ML ; Wood, SJ ; Doyle, LW ; Lidzba, K (PUBLIC LIBRARY SCIENCE, 2013-10-09)
    OBJECTIVES: Extremely preterm (EP) survivors have smaller brains, lower IQ, and worse educational achievement than their term-born peers. The contribution of smaller brain size to the IQ and educational disadvantages of EP is unknown. This study aimed (i) to compare brain volumes from multiple brain tissues and structures between EP-born (< 28 weeks) and term-born (≥ 37 weeks) control adolescents, (ii) to explore the relationships of brain tissue volumes with IQ and basic educational skills and whether this differed by group, and (iii) to explore how much total brain tissue volume explains the underperformance of EP adolescents compared with controls. METHODS: Longitudinal cohort study of 148 EP and 132 term controls born in Victoria, Australia in 1991-92. At age 18, magnetic resonance imaging-determined brain volumes of multiple tissues and structures were calculated. IQ and educational skills were measured using the Wechsler Abbreviated Scale of Intelligence (WASI) and the Wide Range Achievement Test(WRAT-4), respectively. RESULTS: Brain volumes were smaller in EP adolescents compared with controls (mean difference [95% confidence interval] of -5.9% [-8.0, -3.7%] for total brain tissue volume). The largest relative differences were noted in the thalamus and hippocampus. The EP group had lower IQs(-11.9 [-15.4, -8.5]), spelling(-8.0 [-11.5, -4.6]), math computation(-10.3 [-13.7, -6.9]) and word reading(-5.6 [-8.8, -2.4]) scores than controls; all p-values<0.001. Volumes of total brain tissue and other brain tissues and structures correlated positively with IQ and educational skills, a relationship that was similar for both the EP and controls. Total brain tissue volume explained between 20-40% of the IQ and educational outcome differences between EP and controls. CONCLUSIONS: EP adolescents had smaller brain volumes, lower IQs and poorer educational performance than controls. Brain volumes of multiple tissues and structures are related to IQ and educational outcomes. Smaller total brain tissue volume is an important contributor to the cognitive and educational underperformance of adolescents born EP.
  • Item
    Thumbnail Image
    Preventing academic difficulties in preterm children: a randomised controlled trial of an adaptive working memory training intervention - IMPRINT study
    Pascoe, L ; Roberts, G ; Doyle, LW ; Lee, KJ ; Thompson, DK ; Seal, ML ; Josev, EK ; Nosarti, C ; Gathercole, S ; Anderson, PJ (BMC, 2013-09-16)
    BACKGROUND: Very preterm children exhibit difficulties in working memory, a key cognitive ability vital to learning information and the development of academic skills. Previous research suggests that an adaptive working memory training intervention (Cogmed) may improve working memory and other cognitive and behavioural domains, although further randomised controlled trials employing long-term outcomes are needed, and with populations at risk for working memory deficits, such as children born preterm.In a cohort of extremely preterm (<28 weeks' gestation)/extremely low birthweight (<1000 g) 7-year-olds, we will assess the effectiveness of Cogmed in improving academic functioning 2 years' post-intervention. Secondary objectives are to assess the effectiveness of Cogmed in improving working memory and attention 2 weeks', 12 months' and 24 months' post-intervention, and to investigate training related neuroplasticity in working memory neural networks 2 weeks' post-intervention. METHODS/DESIGN: This double-blind, placebo-controlled, randomised controlled trial aims to recruit 126 extremely preterm/extremely low birthweight 7-year-old children. Children attending mainstream school without major intellectual, sensory or physical impairments will be eligible. Participating children will undergo an extensive baseline cognitive assessment before being randomised to either an adaptive or placebo (non-adaptive) version of Cogmed. Cogmed is a computerised working memory training program consisting of 25 sessions completed over a 5 to 7 week period. Each training session takes approximately 35 minutes and will be completed in the child's home. Structural, diffusion and functional Magnetic Resonance Imaging, which is optional for participants, will be completed prior to and 2 weeks following the training period. Follow-up assessments focusing on academic skills (primary outcome), working memory and attention (secondary outcomes) will be conducted at 2 weeks', 12 months' and 24 months' post-intervention. DISCUSSION: To our knowledge, this study will be the first randomised controlled trial to (a) assess the effectiveness of Cogmed in school-aged extremely preterm/extremely low birthweight children, while incorporating advanced imaging techniques to investigate neural changes associated with adaptive working memory training, and (b) employ long-term follow-up to assess the potential benefit of improved working memory on academic functioning. If effective, Cogmed would serve as a valuable, available intervention for improving developmental outcomes for this population. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12612000124831.
  • Item
    Thumbnail Image
    Alterations in the optic radiations of very preterm children-Perinatal predictors and relationships with visual outcomes
    Thompson, DK ; Thai, D ; Kelly, CE ; Leemans, A ; Tournier, J-D ; Kean, MJ ; Lee, KJ ; Inder, TE ; Doyle, LW ; Anderson, PJ ; Hunt, RW (ELSEVIER SCI LTD, 2014)
    Children born very preterm (VPT) are at risk for visual impairments, the main risk factors being retinopathy of prematurity and cerebral white matter injury, however these only partially account for visual impairments in VPT children. This study aimed to compare optic radiation microstructure and volume between VPT and term-born children, and to investigate associations between 1) perinatal variables and optic radiations; 2) optic radiations and visual function in VPT children. We hypothesized that optic radiation microstructure would be altered in VPT children, predicted by neonatal cerebral white matter abnormality and retinopathy of prematurity, and associated with visual impairments. 142 VPT children and 32 controls underwent diffusion-weighted magnetic resonance imaging at 7 years of age. Optic radiations were delineated using constrained spherical deconvolution tractography. Tract volume and average diffusion tensor values for the whole optic radiations and three sub-regions were compared between the VPT and control groups, and correlated with perinatal variables and 7-year visual outcome data. Total tract volumes and average diffusion values were similar between VPT and control groups. On regional analysis of the optic radiation, mean and radial diffusivity were higher within the middle sub-regions in VPT compared with control children. Neonatal white matter abnormalities and retinopathy of prematurity were associated with optic radiation diffusion values. Lower fractional anisotropy in the anterior sub-regions was associated with poor visual acuity and increased likelihood of other visual defects. This study presents evidence for microstructural alterations in the optic radiations of VPT children, which are largely predicted by white matter abnormality or severe retinopathy of prematurity, and may partially explain the higher rate of visual impairments in VPT children.
  • Item
    Thumbnail Image
    Neural Correlates of Impaired Vision in Adolescents Born Extremely Preterm and/or Extremely Low Birthweight
    Kelly, CE ; Cheong, JLY ; Molloy, C ; Anderson, PJ ; Lee, KJ ; Burnett, AC ; Connelly, A ; Doyle, LW ; Thompson, DK ; Ding, Z (PUBLIC LIBRARY SCIENCE, 2014-03-24)
    BACKGROUND: Adolescents born extremely preterm (EP; <28 weeks' gestation) and/or extremely low birthweight (ELBW; <1000 g) experience high rates of visual impairments, however the potential neural correlates of visual impairments in EP/ELBW adolescents require further investigation. This study aimed to: 1) compare optic radiation and primary visual cortical structure between EP/ELBW adolescents and normal birthweight controls; 2) investigate associations between perinatal factors and optic radiation and primary visual cortical structure in EP/ELBW adolescents; 3) investigate associations between optic radiation and primary visual cortical structure in EP/ELBW adolescents and the odds of impaired vision. METHODS: 196 EP/ELBW adolescents and 143 controls underwent magnetic resonance imaging at a mean age of 18 years. Optic radiations were delineated using constrained spherical deconvolution based probabilistic tractography. Primary visual cortices were segmented using FreeSurfer software. Diffusion tensor variables and tract volume of the optic radiations, as well as volume, surface area and thickness of the primary visual cortices, were estimated. RESULTS: Axial, radial and mean diffusivities within the optic radiations, and primary visual cortical thickness, were higher in the EP/ELBW adolescents than controls. Within EP/ELBW adolescents, postnatal corticosteroid exposure was associated with altered optic radiation diffusion values and lower tract volume, while decreasing gestational age at birth was associated with increased primary visual cortical volume, area and thickness. Furthermore, decreasing optic radiation fractional anisotropy and tract volume, and increasing optic radiation diffusivity in EP/ELBW adolescents were associated with increased odds of impaired vision, whereas primary visual cortical measures were not associated with the odds of impaired vision. CONCLUSIONS: Optic radiation and primary visual cortical structure are altered in EP/ELBW adolescents compared with controls, with the greatest alterations seen in those exposed to postnatal corticosteroids and those born earliest. Structural alterations to the optic radiations may increase the risk of impaired vision in EP/ELBW adolescents.
  • Item
    Thumbnail Image
    Histologic chorioamnionitis in preterm infants: correlation with brain magnetic resonance imaging at term equivalent age
    Granger, C ; Spittle, AJ ; Walsh, J ; Pyman, J ; Anderson, PJ ; Thompson, DK ; Lee, KJ ; Coleman, L ; Dagia, C ; Doyle, LW ; Cheong, J (BIOMED CENTRAL LTD, 2018-02-15)
    BACKGROUND: To explore the associations between histologic chorioamnionitis with brain injury, maturation and size on magnetic resonance imaging (MRI) of preterm infants at term equivalent age. METHODS: Preterm infants (23-36 weeks' gestational age) were recruited into two longitudinal cohort studies. Presence or absence of chorioamnionitis was obtained from placental histology and clinical data were recorded. MRI at term-equivalent age was assessed for brain injury (intraventricular haemorrhage, cysts, signal abnormalities), maturation (degree of myelination, gyral maturation) and size of cerebral structures (metrics and brain segmentation). Histologic chorioamnionitis was assessed as a predictor of MRI variables using linear and logistic regression, with adjustment for confounding perinatal variables. RESULTS: Two hundred and twelve infants were included in this study, 47 (22%) of whom had histologic chorioamnionitis. Histologic chorioamnionitis was associated with higher odds of intraventricular haemorrhage (odds ratio [OR] (95% confidence interval [CI]) = 7.4 (2.4, 23.1)), less mature gyral maturation (OR (95% CI) = 2.0 (1.0, 3.8)) and larger brain volume (mean difference in cubic centimeter (95% CI) of 14.1 (1.9, 26.2)); but all relationships disappeared following adjustment for perinatal variables. CONCLUSION: Histologic chorioamnionitis was not independently associated with IVH, less mature gyral maturation or brain volume at term-equivalent age in preterm infants.
  • Item
    Thumbnail Image
    Desikan-Killiany-Tourville Atlas Compatible Version of M-CRIB Neonatal Parcellated Whole Brain Atlas: The M-CRIB 2.0
    Alexander, B ; Loh, WY ; Matthews, LG ; Murray, AL ; Adamson, C ; Beare, R ; Chen, J ; Kelly, CE ; Anderson, PJ ; Doyle, LW ; Spittle, AJ ; Cheong, JLY ; Seal, ML ; Thompson, DK (FRONTIERS MEDIA SA, 2019-02-05)
    Our recently published M-CRIB atlas comprises 100 neonatal brain regions including 68 compatible with the widely-used Desikan-Killiany adult cortical atlas. A successor to the Desikan-Killiany atlas is the Desikan-Killiany-Tourville atlas, in which some regions with unclear boundaries were removed, and many existing boundaries were revised to conform to clearer landmarks in sulcal fundi. Our first aim here was to modify cortical M-CRIB regions to comply with the Desikan-Killiany-Tourville protocol, in order to offer: (a) compatibility with this adult cortical atlas, (b) greater labeling accuracy due to clearer landmarks, and (c) optimisation of cortical regions for integration with surface-based infant parcellation pipelines. Secondly, we aimed to update subcortical regions in order to offer greater compatibility with subcortical segmentations produced in FreeSurfer. Data utilized were the T2-weighted MRI scans in our M-CRIB atlas, for 10 healthy neonates (post-menstrual age at MRI 40-43 weeks, four female), and corresponding parcellated images. Edits were performed on the parcellated images in volume space using ITK-SNAP. Cortical updates included deletion of frontal and temporal poles and 'Banks STS,' and modification of boundaries of many other regions. Changes to subcortical regions included the addition of 'ventral diencephalon,' and deletion of 'subcortical matter' labels. A detailed updated parcellation protocol was produced. The resulting whole-brain M-CRIB 2.0 atlas comprises 94 regions altogether. This atlas provides comparability with adult Desikan-Killiany-Tourville-labeled cortical data and FreeSurfer-labeed subcortical data, and is more readily adaptable for incorporation into surface-based neonatal parcellation pipelines. As such, it offers the ability to help facilitate a broad range of investigations into brain structure and function both at the neonatal time point and developmentally across the lifespan.
  • Item
    Thumbnail Image
    White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term
    Collins, SE ; Spencer-Smith, M ; Murner-Lavanchy, I ; Kelly, CE ; Pyman, P ; Pascoe, L ; Cheong, J ; Doyle, LW ; Thompson, DK ; Anderson, PJ (ELSEVIER SCI LTD, 2019)
    Individuals born very preterm (VPT; <32 weeks' gestational age) are at increased risk of impaired mathematics and word reading performance, as well as widespread white matter microstructural alterations compared with individuals born full term (FT; ≥37 weeks' gestational age). To date, the link between academic performance and white matter microstructure is not well understood. This study aimed to investigate the associations between mathematics and reading performance with white matter microstructure in 114 VPT and 36 FT 13-year-old children. Additionally, we aimed to investigate whether the association of mathematics and reading performance with white matter microstructure in VPT children varied as a function of impairment. To do this, we used diffusion tensor imaging and advanced diffusion modelling techniques (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique), combined with a whole-brain analysis approach (Tract-Based Spatial Statistics). Mathematics performance across VPT and FT groups was positively associated with white matter microstructural measurements of fractional anisotropy and neurite density, and negatively associated with radial and mean diffusivities in widespread, bilateral regions. Furthermore, VPT children with a mathematics impairment (>1 standard deviation below FT mean) had significantly reduced neurite density compared with VPT children without an impairment. Reading performance was not significantly associated with any of the white matter microstructure parameters. Additionally, the associations between white matter microstructure and mathematics and reading performance did not differ significantly between VPT and FT groups. Our findings suggest that alterations in white matter microstructure, and more specifically lower neurite density, are associated with poorer mathematics performance in 13-year-old VPT and FT children. More research is required to understand the association between reading performance and white matter microstructure in 13-year-old children.