Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The immunoproteasome inhibitor ONX-0914 regulates inflammation and expression of contraction associated proteins in myometrium
    Liong, S ; Lim, R ; Nguyen-Ngo, C ; Barker, G ; Parkington, HC ; Lappas, M (WILEY, 2018-08)
    There are currently no effective treatments to prevent spontaneous preterm labor. The precise upstream biochemical pathways that regulate the transition between uterine quiescence during pregnancy and contractility during labor remain unclear. It is well known however that intrauterine inflammation, including infection, is commonly associated with preterm labor. In this study, we identified the immunoproteasome subunit low-molecular-mass protein (LMP)7 mRNA expression to be significantly upregulated in laboring human myometrium. Silencing LMP7 using siRNA-targeted knockdown of LMP7 and its inhibitor ONX-0914 in human myometrial cells and tissues decreased proinflammatory cytokines (IL-6), cell chemotaxis (CXCL8, CCL2 expression, and THP-1 migration), cell to cell adhesion (ICAM1 expression and myometrial adhesion), contraction-associated proteins (PTGS2, FP, PGE2, and PGF2α), as well as suppressing contractions in myometrial cells and in myometrial tissues obtained from laboring women. In addition, LMP7 silencing reduced NF-κB RelA activity. ONX-0914 alleviated inflammation (CCL3, CXCL1, PTGS2, and IL-6) in myometrium, placenta, fetal brain, amniotic fluid, and maternal serum induced by LPS in pregnant mice. Collectively, our data suggest a novel role for ONX-014 to suppress uterine activation and contractility associated with preterm labor.
  • Item
    No Preview Available
    ATF3 is a negative regulator of inflammation in human fetal membranes
    Lim, R ; Barker, G ; Liong, S ; Nguyen-Ngo, C ; Tong, S ; Kaitu'u-Lino, T ; Lappas, M (W B SAUNDERS CO LTD, 2016-11)
    INTRODUCTION: Infection and inflammation stimulate pro-inflammatory cytokines, prostaglandins and matrix metalloproteinase (MMP)-9, which play a central role in myometrial contractions and rupture of fetal membranes. In human and mouse immune cells, activating transcription factor 3 (ATF3) is a negative regulator of inflammation. No studies have examined the role of ATF3 in human labour. METHODS: Primary amnion cells were used to determine the effect of interleukin (IL)-1β and the bacterial product fibroblast-stimulating lipopeptide (fsl-1) on ATF3 expression, and the effect of ATF3 siRNA on pro-labour mediators. ATF3 expression was assessed in fetal membranes from non-labouring and labouring women at term and preterm, and after preterm pre-labour rupture of membranes (PPROM). RESULTS: IL-1β and fsl-1 significantly increased ATF3 expression. Silencing ATF3 significantly increased IL-1β- or fsl-1-induced expression of pro-inflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6) and chemokines (IL-8 and monocyte chemoattractant protein-1 (MCP-1)); cyclooxygenase-2 (COX-2) mRNA expression and prostaglandin PGF2α release; and MMP-9 expression. ATF3 expression was decreased in fetal membranes with term labour. There was no effect of preterm labour or PPROM on ATF3 expression. DISCUSSION: ATF3 is a negative regulator of inflammation in human fetal membranes; in primary amnion cells, ATF3 expression is induced by IL-1β and fsl-1, and ATF3 silencing further exacerbates the inflammatory response when stimulated with these factors. Subsequently, ATF3 expression is decreased in fetal membranes after term labour and with preterm chorioamnionitis, conditions closely associated with inflammation and infection. Our data suggest that ATF3 may play a role in the terminal processes of human labour and delivery.