Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Placental DAAM2 is unaltered in preeclampsia, but upregulated by treatment with proton pump inhibitors
    De Alwis, N ; Beard, S ; Binder, NK ; Pritchard, N ; Tong, S ; Kaitu'u-Lino, TJ ; Hannan, NJ (ELSEVIER SCI LTD, 2022-12)
    BACKGROUND: Dishevelled Associated Activator Of Morphogenesis 2 (DAAM2) levels are elevated in the maternal circulation and placenta in pregnancies complicated by fetal growth restriction. However, placental DAAM2 levels in cases of preeclampsia have not previously been explored. Here, we examined placental DAAM2 in pregnancies complicated by preterm preeclampsia, and whether candidate preeclampsia therapeutics altered its expression. METHODS: DAAM2 mRNA and protein levels were assessed in placental tissue from cases of preterm preeclampsia and gestation-matched controls (delivering ≤ 34 weeks; qPCR and western blot respectively). Short interfering RNAs were used to silence DAAM2 in isolated primary cytotrophoblast under normoxic (8 % O2) and hypoxic (1 % O2) conditions, and expression of anti-angiogenic sFLT-1, angiogenic PGF, antioxidant, fetal growth, and inflammatory genes assessed. DAAM2 expression was measured in placental explant tissue from pregnancies complicated by preeclampsia, treated with three proton pump inhibitors (100 µM esomeprazole, lansoprazole, and rabeprazole). RESULTS: DAAM2 expression was significantly reduced in preeclamptic placental tissue compared to controls, but protein production was unchanged. Silencing DAAM2 in hypoxic cytotrophoblast increased sFLT-i13 isoform expression, but did not alter sFLT-e15a or PGF expression, or sFLT-1 secretion. DAAM2 knockdown did not alter expression of antioxidant (NQO-1, TXN, GCLC), fetal growth (SPINT1), or inflammasome (NLRP3) genes. Esomeprazole and lansoprazole, but not rabeprazole, increased DAAM2 expression in placental explant tissue from cases of preeclampsia. CONCLUSION: Placental DAAM2 protein is not significantly altered in placental tissue in cases of preeclampsia, and its suppression does not alter sFLT-1 secretion. Hence, placental DAAM2 is unlikely to drive the pathogenesis associated with preeclampsia.
  • Item
    Thumbnail Image
    Placental OLAH Levels Are Altered in Fetal Growth Restriction, Preeclampsia and Models of Placental Dysfunction
    de Alwis, N ; Beard, S ; Binder, NK ; Pritchard, N ; Kaitu'u-Lino, TJ ; Walker, SP ; Stock, O ; Groom, K ; Petersen, S ; Henry, A ; Said, JM ; Seeho, S ; Kane, SC ; Tong, S ; Hui, L ; Hannan, NJ (MDPI, 2022-09)
    Previously, we identified elevated transcripts for the gene Oleoyl-ACP Hydrolase (OLAH) in the maternal circulation of pregnancies complicated by preterm fetal growth restriction. As placental dysfunction is central to the pathogenesis of both fetal growth restriction and preeclampsia, we aimed to investigate OLAH levels and function in the human placenta. We assessed OLAH mRNA expression (qPCR) throughout pregnancy, finding placental expression increased as gestation progressed. OLAH mRNA and protein levels (Western blot) were elevated in placental tissue from cases of preterm preeclampsia, while OLAH protein levels in placenta from growth-restricted pregnancies were comparatively reduced in the preeclamptic cohort. OLAH expression was also elevated in placental explant tissue, but not isolated primary cytotrophoblast cultured under hypoxic conditions (as models of placental dysfunction). Further, we discovered that silencing cytotrophoblast OLAH reduced the expression of pro- and anti-apoptosis genes, BAX and BCL2, placental growth gene, IGF2, and oxidative stress gene, NOX4. Collectively, these findings suggest OLAH could play a role in placental dysfunction and may be a therapeutic target for mitigating diseases associated with this vital organ. Further research is required to establish the role of OLAH in the placenta, and whether these changes may be a maternal adaptation or consequence of disease.
  • Item
    Thumbnail Image
    Serum Collected from Preeclamptic Pregnancies Drives Vasoconstriction of Human Omental Arteries-A Novel Ex Vivo Model of Preeclampsia for Therapeutic Development
    Fato, BR ; de Alwis, N ; Beard, S ; Binder, NK ; Pritchard, N ; Tong, S ; Kaitu'u-Lino, TJ ; Hannan, NJ (MDPI, 2022-09)
    New-onset maternal hypertension is a hallmark of preeclampsia, driven by widespread endothelial dysfunction and systemic vasoconstriction. Here, we set out to create a new ex vivo model using preeclamptic serum to cause injury to the endothelium, mimicking vascular dysfunction in preeclampsia and offering the potential to evaluate candidate therapeutic interventions. Human omental arteries were collected at caesarean section from normotensive pregnant patients at term (n = 9). Serum was collected from pregnancies complicated by preterm preeclampsia (birth < 34 weeks’ gestation, n = 16), term preeclampsia (birth > 37 weeks’ gestation, n = 5), and healthy gestation-matched controls (preterm n = 16, term n = 12). Using wire myography, we performed ex vivo whole vessel assessment where human omental arteries were treated with increasing doses of each serum treatment (2−20%) and vasoreactivity was assessed. All pregnant serum treatments successfully drove vasoconstriction; no significant difference was observed in the degree of vasoconstriction when exposed to preeclamptic or control serum. We further demonstrated the ability of esomeprazole (a candidate therapeutic for preeclampsia; 0.1−100 µM) to drive vasorelaxation of pre-constricted vessels (only with serum from preeclamptic patients). In summary, we describe a novel human physiological model of preeclamptic vascular constriction. We demonstrate its exciting potential to screen drugs for their therapeutic potential as treatment for vasoconstriction induced by preeclampsia.
  • Item
    No Preview Available
    The New Generation Antiplatelet Agent Prasugrel Represents an Exciting Novel Candidate Therapy for Preeclampsia.
    De Alwis, N ; Binder, N ; Beard, S ; Vi, N ; Tu'uhevaha, K-L ; Tong, S ; Hannan, N (SPRINGER HEIDELBERG, 2020-03)
  • Item
    Thumbnail Image
    NR4A2 expression is not altered in placentas from cases of growth restriction or preeclampsia, but is reduced in hypoxic cytotrophoblast
    de Alwis, N ; Beard, S ; Binder, NK ; Pritchard, N ; Kaitu'u-Lino, TJ ; Walker, SP ; Stock, O ; Groom, KM ; Petersen, S ; Henry, A ; Said, JM ; Seeho, S ; Kane, SC ; Tong, S ; Hannan, NJ (NATURE PORTFOLIO, 2021-10-19)
    Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) transcripts are elevated in the circulation of individuals whose pregnancies are complicated by preterm fetal growth restriction (FGR). In this paper, we show that the cases with preeclampsia (PE) have increased circulating NR4A2 transcripts compared to those with normotensive FGR. We aimed to establish whether the dysfunctional placenta mirrors the increase in NR4A2 transcripts and further, to uncover the function of placental NR4A2. NR4A2 expression was detected in preterm and term placental tissue; expressed higher at term. NR4A2 mRNA expression and protein were not altered in placentas from preterm FGR or PE pregnancies. Hypoxia (1% O2 compared to 8% O2) significantly reduced cytotrophoblast NR4A2 mRNA expression, but not placental explant NR4A2 expression. Silencing cytotrophoblast NR4A2 expression under hypoxia (via short interfering (si)RNAs) did not alter angiogenic Placental Growth Factor, nor anti-angiogenic sFlt-1 mRNA expression or protein secretion, but increased expression of cellular antioxidant, oxidative stress, inflammatory, and growth genes. NR4A2 expression was also not altered in a model of tumour necrosis factor-α-induced endothelial dysfunction, or with pravastatin treatment. Further studies are required to identify the origin of the circulating transcripts in pathological pregnancies, and investigate the function of placental NR4A2.
  • Item
    Thumbnail Image
    Pre-Clinical Investigation of Cardioprotective Beta-Blockers as a Therapeutic Strategy for Preeclampsia
    Binder, NK ; MacDonald, TM ; Beard, SA ; de Alwis, N ; Tong, S ; Kaitu'u-Lino, TJ ; Hannan, NJ (MDPI, 2021-08)
    Despite significant maternal and fetal morbidity, a treatment for preeclampsia currently remains an unmet need in clinical care. As too does the lifelong cardiovascular risks imparted on preeclampsia sufferers. Endothelial dysfunction and end-organ injury are synonymous with both preeclampsia and cardiovascular disease, including heart failure. We propose that beta-blockers, known to improve endothelial dysfunction in the treatment of cardiovascular disease, and specifically known to reduce mortality in the treatment of heart failure, may be beneficial in the treatment of preeclampsia. Here, we assessed whether the beta-blockers carvedilol, bisoprolol, and metoprolol could quench the release of anti-angiogenic factors, promote production of pro-angiogenic factors, reduce markers of inflammation, and reduce endothelial dysfunction using our in vitro pre-clinical preeclampsia models encompassing primary placental tissue and endothelial cells. Here, we show beta-blockers effected a modest reduction in secretion of anti-angiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and increased expression of pro-angiogenic placental growth factor, vascular endothelial growth factor and adrenomedullin in endothelial cells. Beta-blocker treatment mitigated inflammatory changes occurring after endothelial dysfunction and promoted cytoprotective antioxidant heme oxygenase-1. The positive effects of the beta-blockers were predominantly seen in endothelial cells, with a less consistent response seen in placental cells/tissue. In conclusion, beta-blockers show potential as a novel therapeutic approach in the treatment of preeclampsia and warrant further investigation.
  • Item
    Thumbnail Image
    DAAM2 is elevated in the circulation and placenta in pregnancies complicated by fetal growth restriction and is regulated by hypoxia
    de Alwis, N ; Beard, S ; Binder, NK ; Pritchard, N ; Kaitu'u-Lino, TJ ; Walker, SP ; Stock, O ; Groom, K ; Petersen, S ; Henry, A ; Said, JM ; Seeho, S ; Kane, SC ; Hui, L ; Tong, S ; Hannan, NJ (NATURE PORTFOLIO, 2021-03-10)
    Previously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway is expressed in human placenta and associated with dysfunction and FGR. We performed linear regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78-0.89)]. Placental DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may have cytoprotective effects, but further research is required to elucidate its role in healthy and dysfunctional placentas.