Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Effects of Maternal Obstructive Sleep Apnoea on Fetal Growth: A Prospective Cohort Study
    Fung, AM ; Wilson, DL ; Lappas, M ; Howard, M ; Barnes, M ; O'Donoghue, F ; Tong, S ; Esdale, H ; Fleming, G ; Walker, SP ; Frasch, MG (PUBLIC LIBRARY SCIENCE, 2013-07-24)
    OBJECTIVE: The objective of this study is to determine whether obstructive sleep apnea (OSA) is associated with reduced fetal growth, and whether nocturnal oxygen desaturation precipitates acute fetal heart rate changes. STUDY DESIGN: We performed a prospective observational study, screening 371 women in the second trimester for OSA symptoms. 41 subsequently underwent overnight sleep studies to diagnose OSA. Third trimester fetal growth was assessed using ultrasound. Fetal heart rate monitoring accompanied the sleep study. Cord blood was taken at delivery, to measure key regulators of fetal growth. RESULTS: Of 371 women screened, 108 (29%) were high risk for OSA. 26 high risk and 15 low risk women completed the longitudinal study; 14 had confirmed OSA (cases), and 27 were controls. The median (interquartile range) respiratory disturbance index (number of apnoeas, hypopnoeas or respiratory related arousals/hour of sleep) was 7.9 (6.1-13.8) for cases and 2.2 (1.3-3.5) for controls (p<0.001). Impaired fetal growth was observed in 43% (6/14) of cases, vs 11% (3/27) of controls (RR 2.67; 1.25-5.7; p = 0.04). Using logistic regression, only OSA (OR 6; 1.2-29.7, p = 0.03) and body mass index (OR 2.52; 1.09-5.80, p = 0.03) were significantly associated with impaired fetal growth. After adjusting for body mass index on multivariate analysis, the association between OSA and impaired fetal growth was not appreciably altered (OR 5.3; 0.93-30.34, p = 0.06), although just failed to achieve statistical significance. Prolonged fetal heart rate decelerations accompanied nocturnal oxygen desaturation in one fetus, subsequently found to be severely growth restricted. Fetal growth regulators showed changes in the expected direction- with IGF-1 lower, and IGFBP-1 and IGFBP-2 higher- in the cord blood of infants of cases vs controls, although were not significantly different. CONCLUSION: OSA may be associated with reduced fetal growth in late pregnancy. Further evaluation is warranted to establish whether OSA may be an important contributor to adverse perinatal outcome, including stillbirth.
  • Item
    No Preview Available
    Diagnostic Accuracy of Maternal Serum Macrophage Inhibitory Cytokine-1 and Pregnancy-Associated Plasma Protein-A at 6-10 Weeks of Gestation to Predict Miscarriage
    Tong, S ; Ngian, G-L ; Onwude, JL ; Permezel, M ; Saglam, B ; Hay, S ; Konje, JC ; Marczylo, TH ; Fleming, G ; Walker, SP ; Lappas, M (LIPPINCOTT WILLIAMS & WILKINS, 2012-05)
    OBJECTIVE: To determine whether serum macrophage inhibitory cytokine-1, pregnancy-associated plasma protein-A (PAPP-A), anandamide, or β-human chorionic gonadotropin (hCG) measured in an asymptomatic population in the middle of the first trimester with a viable fetus predicts subsequent miscarriage. METHODS: We undertook a prospective cohort study at Mercy Hospital for Women between 2004 and 2008. Participants (N=782) were recruited from prenatal clinics, where samples were taken from asymptomatic women at 6 0/7 to 10 6/7 weeks of gestation. We collected samples from only those women for whom we were able to obtain ultrasound evidence of a singleton with fetal cardiac activity. Serum macrophage inhibitory cytokine-1, PAPP-A, anandamide, and β-hCG concentrations were assayed. RESULTS: Twenty-one (2.7%) miscarried and 761 did not. Among those who miscarried, macrophage inhibitory cytokine-1 and PAPP-A were significantly decreased at 63% (multiples of the median (MOM) 0.63, 25th-75th percentiles 0.33-0.88) and 23% (MOM 0.23, 25th-75th percentiles 0.12-0.48) of levels seen among those with ongoing pregnancies (P<.001 for both comparisons). In contrast, neither serum β-hCG (MOM 0.99, 25th-75th percentiles 0.46-1.86) nor anandamide (MOM 1.07, 25th-75th percentiles 0.87-1.19) was elevated or decreased among those who miscarried compared with those with ongoing pregnancies. At a fixed 10% false-positive rate (90% specificity), a test combining macrophage inhibitory cytokine-1 and PAPP-A yielded 63% sensitivity and a 6.6 positive likelihood ratio in predicting miscarriage. CONCLUSION: Low serum levels of macrophage inhibitory cytokine-1 and PAPP-A measured from asymptomatic women at 6-10 weeks of gestation with viable pregnancies can predict subsequent miscarriage. These analytes are likely to have an important biological role in early pregnancy and are likely to be useful clinical biomarkers for miscarriage and other early pregnancy complications. LEVEL OF EVIDENCE: II.
  • Item
    Thumbnail Image
    Quantifying mRNA coding growth genes in the maternal circulation to detect fetal growth restriction
    Whitehead, CL ; Walker, SP ; Mendis, S ; Lappas, M ; Tong, S (MOSBY-ELSEVIER, 2013-08)
    OBJECTIVE: To examine whether mRNA circulating in maternal blood coding genes regulating fetal growth are differentially expressed in (1) severe preterm fetal growth restriction (FGR) and (2) at 28 weeks' gestation in pregnancies destined to develop FGR at term. STUDY DESIGN: mRNA coding growth genes were measured in 2 independent cohorts. The first was women diagnosed with severe preterm FGR (<34 weeks' gestation; n = 20) and gestation matched controls (n = 15), where the mRNA was measured in both maternal blood and placenta. The second cohort was a prospective longitudinal study (n = 52) of women whom had serial ultrasound assessments of fetal growth. mRNA coding growth genes in maternal blood were measured at 28 and 36 weeks in pregnancies with declining growth trajectories (ending up with term FGR; n = 10 among the 52 recruited) and controls who maintained normal growth trajectory (n = 15). RESULTS: In women with severe preterm FGR, there was increased expression of placental growth hormone (6.3-fold), insulin-like growth factors (IGF1, 3.4-fold; IGF2, 5.0-fold), IGF receptors (2.1-fold) and IGF binding proteins (3.0-fold), and reduced expression of ADAM12 (0.5-fold) in maternal blood (and similar trends in placenta) compared with controls (P < .05). Notably, at 28 weeks' gestation there was increased IGF2 (3.9-fold), placental growth hormone (2.7-fold), and IGF BP2 (2.1-fold) expression in maternal blood in women destined to develop FGR at term (P < .05). CONCLUSION: Measuring mRNA coding growth genes in maternal blood may detect unsuspected severe preterm FGR already present in utero, and predict term FGR when measured at 28 weeks' gestation.
  • Item
    No Preview Available
    Placental Specific mRNA in the Maternal Circulation Are Globally Dysregulated in Pregnancies Complicated by Fetal Growth Restriction
    Whitehead, CL ; Walker, SP ; Ye, L ; Mendis, S ; Kaitu'u-Lino, TJ ; Lappas, M ; Tong, S (ENDOCRINE SOC, 2013-03)
    CONTEXT: Fetal growth restriction (FGR) is a leading cause of perinatal mortality, yet no reliable screening test exists. Placental specific mRNA in the maternal circulation may reflect changes in the placental transcriptome in FGR and could be a novel biomarker for FGR. OBJECTIVE: The aim of the study was to identify placental specific RNA detectable in the maternal circulation and examine whether they are differentially expressed in severe preterm FGR. DESIGN: In silico screening was used to identify placental specific RNAs. Their expression in cases of severe FGR vs controls was examined in both maternal blood and placenta by microarray, RT-PCR, and in situ hybridization. RESULTS: Via in silico analysis, we identified 137 genes very highly expressed in the placenta relative to other tissues. Using microarray, we found that they were detectable in the maternal blood and were globally dysregulated with preterm FGR; 75 genes (55%) had a ≥1.5-fold differential expression compared to controls. Eight genes (ERVWE-1, PSG1, PLAC4, TAC3, PLAC3, CRH, CSH1, and KISS1) were validated by RT-PCR to be significantly increased in both maternal blood and placenta in a larger cohort of severe FGR compared to controls. In situ hybridization confirmed PAPPA2 and ERVWE-1 localized to the syncytiotrophoblast. CONCLUSION: There is global differential expression of placental specific mRNA in the maternal blood in pregnancies complicated by severe preterm FGR. Placental specific mRNA in maternal blood may represent a new class of biomarkers for preterm FGR.