Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Tumor-derived exosomes in ovarian cancer - liquid biopsies for early detection and real-time monitoring of cancer progression.
    Sharma, S ; Zuñiga, F ; Rice, GE ; Perrin, LC ; Hooper, JD ; Salomon, C (Impact Journals, LLC, 2017-11-28)
    Ovarian cancer usually has a poor prognosis because it predominantly presents as high stage disease. New approaches are required to develop more effective early detection strategies and real-time treatment response monitoring. Nano-sized extracellular vesicles (EVs, including exosomes) may provide an approach to enrich tumor biomarker detection and address this clinical need. Exosomes are membranous extracellular vesicles of approximately 100 nm in diameter that have potential to be used as biomarkers and therapeutic delivery tools for ovarian cancer. Exosomal content (proteins and miRNA) is often parent cell specific thus providing an insight or "fingerprint" of the intracellular environment. Furthermore, exosomes can aid cell-cell communication and have the ability to modify target cells by transferring their content. Additionally, via the capacity to evade the immune system and remain stable over long periods in circulation, exosomes have potential as natural drug agents. This review examines the potential role of exosomes in diagnosis, drug delivery and real-time monitoring in ovarian cancer.
  • Item
    Thumbnail Image
    Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression.
    Nuzhat, Z ; Kinhal, V ; Sharma, S ; Rice, GE ; Joshi, V ; Salomon, C (Impact Journals, LLC, 2017-03-07)
    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.
  • Item
    Thumbnail Image
    The Crosstalk between Ovarian Cancer Stem Cell Niche and the Tumor Microenvironment.
    Varas-Godoy, M ; Rice, G ; Illanes, SE (Hindawi Limited, 2017)
    Ovarian cancer is one of the most important causes of cancer-related death among women in the world. Despite advances in ovarian cancer treatment, 70-80% of women who initially respond to therapy eventually relapse and die. There is evidence that a small population of cells within the tumors called cancer stem cells (CSCs) could be responsible for treatment failure due to their enhanced chemoresistance and tumorigenicity. These cells reside in a niche that maintains the principal properties of CSCs. These properties are associated with the capacity of CSCs to interact with different cells of the tumor microenvironment including mesenchymal stem cells, endothelial cells, immune cells, and fibroblasts, promoting cancer progression. This interaction can be mediated by cytokines, growth factors, lipids, and/or extracellular vesicles released in the CSC niche. In this review, we will discuss how the interaction between ovarian CSCs and the tumor microenvironment can contribute to the maintenance of the CSC niche and consequently to tumor progression in ovarian cancer.
  • Item
    Thumbnail Image
    Phase II biomarker trial of a multimarker diagnostic for ovarian cancer
    Edgell, T ; Martin-Roussety, G ; Barker, G ; Autelitano, DJ ; Allen, D ; Grant, P ; Rice, GE (SPRINGER, 2010-07)
    PURPOSE: The primary hypothesis to be tested in this study was that the diagnostic performance (as assessed by the area under the receiver operator characteristic curve, AUC) of a multianalyte panel to correctly identify women with ovarian cancer was significantly greater than that for CA-125 alone. METHODS: A retrospective, case-control study (phase II biomarker trial) was conducted that involved 362 plasma samples obtained from women with ovarian cancer (n = 150) and healthy controls (n = 212). A multivariate classification model was developed that incorporated five biomarkers of ovarian cancer, CA-125; C-reactive protein (CRP); serum amyloid A (SAA); interleukin 6 (IL-6); and interleukin 8 (IL-8) from a modelling cohort (n = 179). The performance of the model was evaluated using an independent validation cohort (n = 183) and compared with of CA-125 alone. RESULTS: The AUC for the biomarker panel was significantly greater than the AUC for CA-125 alone for a validation cohort (p < 0.01) and an early stage disease cohort (i.e. Stages I and II; p < 0.01). At a threshold of 0.3, the sensitivity and specificity of the multianalyte panel were 94.1 and 91.3%, respectively, for the validation cohort and 92.3 and 91.3%, respectively for an early stage disease cohort. CONCLUSIONS: The use of a panel of plasma biomarkers for the identification of women with ovarian cancer delivers a significant increase in diagnostic performance when compared to the performance of CA-125 alone.
  • Item
    Thumbnail Image
    A proteomic analysis of C-reactive protein stimulated THP-1 monocytes
    Eisenhardt, SU ; Habersberger, J ; Oliva, K ; Lancaster, GI ; Ayhan, M ; Woollard, KJ ; Bannasch, H ; Rice, GE ; Peter, K (BMC, 2011-01-10)
    BACKGROUND: C-reactive protein (CRP) is a predictor of cardiovascular risk. It circulates as a pentameric protein in plasma. Recently, a potential dissociation mechanism from the disc-shaped pentameric CRP (pCRP) into single monomers (monomeric or mCRP) has been described. It has been shown that mCRP has strong pro-inflammatory effects on monocytes. To further define the role of mCRP in determining monocyte phenotype, the effects of CRP isoforms on THP-1 protein expression profiles were determined. The hypothesis to be tested was that mCRP induces specific changes in the protein expression profile of THP-1 cells that differ from that of pCRP. METHODS: Protein cell lysates from control and mCRP, pCRP or LPS-treated THP-1 cells were displayed using 2-dimensional SDS PAGE and compared. Differentially expressed proteins were identified by MALDI-TOF MS and confirmed by Western blotting. RESULTS: mCRP significantly up-regulates ubiquitin-activating enzyme E1, a member of the ubiquitin-proteasome system in THP-1 monocytes. Furthermore, HSP 70, alpha-actinin-4 (ACTN4) and alpha-enolase/enolase 1 were upregulated. The proteomic profile of LPS and pCRP treated monocytes differ significantly from that of mCRP. CONCLUSION: The data obtained in this study support the hypothesis that isoform-specific effects of CRP may differentially regulate the phenotype of monocytes.
  • Item
    Thumbnail Image
    Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - Liquid biopsies for monitoring complications of pregnancy.
    Truong, G ; Guanzon, D ; Kinhal, V ; Elfeky, O ; Lai, A ; Longo, S ; Nuzhat, Z ; Palma, C ; Scholz-Romero, K ; Menon, R ; Mol, BW ; Rice, GE ; Salomon, C ; Bouma, GJ (Public Library of Science (PLoS), 2017)
    Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications.
  • Item
    Thumbnail Image
    Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes
    Jayabalan, N ; Nair, S ; Nuzhat, Z ; Rice, GE ; Zuniga, FA ; Sobrevia, L ; Leiva, A ; Sanhueza, C ; Agustin Gutierrez, J ; Lappas, M ; Freeman, DJ ; Salomon, C (FRONTIERS MEDIA SA, 2017-09-27)
    Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue-derived EVs and metabolic syndrome in obesity. In this review, we will discuss the changes in human placenta and adipose tissue in GDM and obesity and summarize the findings regarding the role of adipose tissue and placenta-derived EVs, with an emphasis on exosomes in obesity, and the contribution of obesity to the development of GDM.
  • Item
    Thumbnail Image
    Human cervicovaginal fluid biomarkers to predict term and preterm labor
    Heng, YJ ; Liong, S ; Permezel, M ; Rice, GE ; Di Quinzio, MKW ; Georgiou, HM (FRONTIERS MEDIA SA, 2015-05-13)
    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients.
  • Item
    No Preview Available
    2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue
    Oliva, K ; Barker, G ; Rice, GE ; Bailey, MJ ; Lappas, M (BIOSCIENTIFICA LTD, 2013-08)
    Gestational diabetes mellitus (GDM) is a significant risk factor for the type 2 diabetes epidemic in many populations. Maternal adipose tissue plays a central role in the pathophysiology of GDM. Thus, the aim of this study was to determine the effect of GDM on the proteome of adipose tissue. Omental adipose tissue was obtained at the time of term Caesarean section from women with normal glucose tolerance (NGT) or GDM. 2D-difference gel electrophoresis (DIGE), followed by mass spectrometry, was used to identify protein spots (n = 6 patients per group). Western blotting was used for confirmation of six of the spot differences (n = 6 patients per group). We found 14 proteins that were differentially expressed between NGT and GDM adipose tissue (≥ 1.4-fold, P < 0.05). GDM was associated with an up-regulation of four proteins: collagen alpha-2(VI) chain (CO6A2 (COL6A2)), fibrinogen beta chain (FIBB (FGB)), lumican (LUM) and S100A9. On the other hand, a total of ten proteins were found to be down-regulated in adipose tissue from GDM women. These were alpha-1-antitrypsin (AIAT (SERPINA 1)), annexin A5 (ANXA5), fatty acid-binding protein, adipocyte (FABP4), glutathione S-transferase P (GSTP (GSTP1)), heat-shock protein beta-1 (HSP27 (HSPB1)), lactate dehydrogenase B chain (LDHB), perilipin-1 (PLIN1), peroxiredoxin-6 (PRX6 (PRDX6)), selenium-binding protein 1 (SBP1) and vinculin (VINC (VCL)). In conclusion, proteomic analysis of omental fat reveals differential expression of several proteins in GDM patients and NGT pregnant women. This study revealed differences in expression of proteins that are involved in inflammation, lipid and glucose metabolism and oxidative stress and added further evidence to support the role of visceral adiposity in the pathogenesis of GDM.
  • Item
    Thumbnail Image
    Effect of Supracervical Apposition and Spontaneous Labour on Apoptosis and Matrix Metalloproteinases in Human Fetal Membranes
    Chai, M ; Walker, SP ; Riley, C ; Rice, GE ; Permezel, M ; Lappas, M (HINDAWI LTD, 2013)
    BACKGROUND: Apoptosis and matrix metalloproteinase (MMP-9) are capable of hydrolysing components of the extracellular matrix and weakening the fetal membranes which leads to eventual rupture, a key process of human parturition. The aim of this study was to determine the effect of supracervical apposition and spontaneous labour on apoptosis and MMP-9 in human fetal membranes at term. METHODS: Fetal membranes were obtained from term non-labouring supracervical site (SCS) and compared to (i) a paired distal site (DS) or (ii) site of rupture (SOR) after spontaneous labour onset. RESULTS: The expression of the proapoptotic markers Bax, Smac, Fas, FasL, caspase-3, and PARP, was significantly higher in the non-labouring SCS chorion compared to paired DS. Bax, Smac, FasL, caspase-3, and PARP staining was higher in the non-labouring SCS fetal membranes than that in the post-labour SOR. MMP-9 expression and activity were higher in the post-labour SOR fetal membranes compared to non-labouring SCS fetal membranes. CONCLUSION: Components of the apoptotic signalling pathways and MMP-9 may play a role in rupture and labour. Non-labouring SCS fetal membranes display altered morphology and altered apoptotic biochemical characteristics in preparation for labour, while the laboured SOR displays unique MMP characteristics.