Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Mesenchymal Stem/Stromal Cells and Their Role in Oxidative Stress Associated with Preeclampsia
    Kusuma, GD ; Georgiou, HM ; Perkins, A ; Abumaree, MH ; Brennecke, SP ; Kalionis, B (YALE J BIOLOGY MEDICINE, INC, 2022-03)
    Preeclampsia (PE) is a serious medically important disorder of human pregnancy, which features de novo pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation. The net effect is damage to the maternal vascular endothelium, which subsequently manifests as the clinical features of PE. Other than delivery of the fetus and placenta, curative treatments for PE have not yet been forthcoming, which reflects the complexity of the clinical syndrome. A major source of reactive oxygen species that contributes to the widespread maternal vascular endothelium damage is the PE-affected decidua. The role of decidua-derived mesenchymal stem/stromal cells (MSC) in normotensive and pathological placenta development is poorly understood. The ability to respond to an environment of oxidative damage is a "universal property" of MSC but the biological mechanisms that MSC employ in response to oxidative stress are compromised in PE. In this review, we discuss how MSC respond to oxidative stress in normotensive and pathological conditions. We also consider the possibility of manipulating the oxidative stress response of abnormal MSC as a therapeutic strategy to treat preeclampsia.
  • Item
    Thumbnail Image
    Preterm birth update in Australasia: A report of the international symposium of Preterm Birth International Collaborative-Australasia branch.
    Qiao, C ; Menon, R ; Ahn, KH ; Suzuki, S ; Kshetrapal, P ; Georgiou, HM ; Mesiano, S ; Zhong, N (Frontiers Media SA, 2022)
    Preterm birth (PTB) is one of the most important problems that pose dilemmas for both the obstetrician and neonatologist, placing a heavy burden psychologically and financially on the families involved, and triggering high socio-economic costs to the public healthcare. The rate of PTB in Asian countries has been ranked at top globally. To reduce the PTB rate, to promote the prevention and intervention for PTB, and to better understand the pathophysiology underlying PTB, the Preterm Birth International Collaborative Australia branch (PREBIC-AA) was launched in 2017. A series scientific activities including organizing annual research symposiums has been planned and organized among Australasian countries. Here we briefly updated the current progress in clinical management and translational research on PTB in Australasian countries that have been participated in PREBIC-AA.
  • Item
    Thumbnail Image
    Preterm birth prediction in asymptomatic women at mid-gestation using a panel of novel protein biomarkers: the Prediction of PreTerm Labor (PPeTaL) study.
    Leow, SM ; Di Quinzio, MKW ; Ng, ZL ; Grant, C ; Amitay, T ; Wei, Y ; Hod, M ; Sheehan, PM ; Brennecke, SP ; Arbel, N ; Georgiou, HM (Elsevier, 2020-05)
    BACKGROUND: Accurate prediction of spontaneous preterm labor/preterm birth in asymptomatic women remains an elusive clinical challenge because of the multi-etiological nature of preterm birth. OBJECTIVE: The aim of this study was to develop and validate an immunoassay-based, multi-biomarker test to predict spontaneous preterm birth. MATERIALS AND METHODS: This was an observational cohort study of women delivering from December 2017 to February 2019 at 2 maternity hospitals in Melbourne, Australia. Cervicovaginal fluid samples were collected from asymptomatic women at gestational week 16+0-24+0, and biomarker concentrations were quantified by enzyme-linked immunosorbent assay. Women were assigned to a training cohort (n = 136) and a validation cohort (n = 150) based on chronological delivery dates. RESULTS: Seven candidate biomarkers representing key pathways in utero-cervical remodeling were discovered by high-throughput bioinformatic search, and their significance in both in vivo and in vitro studies was assessed. Using a combination of the biomarkers for the first 136 women allocated to the training cohort, we developed an algorithm to stratify term birth (n = 124) and spontaneous preterm birth (n = 12) samples with a sensitivity of 100% (95% confidence interval, 76-100%) and a specificity of 74% (95% confidence interval, 66-81%). The algorithm was further validated in a subsequent cohort of 150 women (n = 139 term birth and n = 11 preterm birth), achieving a sensitivity of 91% (95% confidence interval, 62-100%) and a specificity of 78% (95% confidence interval, 70-84%). CONCLUSION: We have identified a panel of biomarkers that yield clinically useful diagnostic values when combined in a multiplex algorithm. The early identification of asymptomatic women at risk for preterm birth would allow women to be triaged to specialist clinics for further assessment and appropriate preventive treatment.
  • Item
    Thumbnail Image
    Ageing in human parturition: impetus of the gestation clock in the decidua
    Wijaya, JC ; Khanabdali, R ; Georgiou, HM ; Kalionis, B (OXFORD UNIV PRESS INC, 2020-10)
    Despite sharing many common features, the relationship between ageing and parturition remains poorly understood. The decidua is a specialized lining of endometrial tissue, which develops in preparation for pregnancy. The structure and location of the decidua support its role as the physical scaffold for the growing embryo and placenta, and thus, it is vital to sustain pregnancy. Approaching term, the physical support properties of the decidua are naturally weakened to permit parturition. In this review, we hypothesize that the natural weakening of decidual tissue at parturition is promoted by the ageing process. Studies of the ageing-related functional and molecular changes in the decidua at parturition are reviewed and classified using hallmarks of ageing as the framework. The potential roles of decidual mesenchymal stem/stromal cell (DMSC) ageing in labor are also discussed because, although stem cell exhaustion is also a hallmark of ageing, its role in labor is not completely understood. In addition, the potential roles of extracellular vesicles secreted by DMSCs in labor, and their parturition-related miRNAs, are reviewed to gain further insight into this research area. In summary, the literature supports the notion that the decidua ages as the pregnancy progresses, and this may facilitate parturition, suggesting that ageing is the probable impetus of the gestational clocks in the decidua. This conceptual framework was developed to provide a better understanding of the natural ageing process of the decidua during parturition as well as to encourage future studies of the importance of healthy ageing for optimal pregnancy outcomes.
  • Item
    Thumbnail Image
    Functional changes in decidual mesenchymal stem/stromal cells are associated with spontaneous onset of labour
    Wijaya, JC ; Khanabdali, R ; Georgiou, HM ; Kokkinos, M ; James, PF ; Brennecke, SP ; Kalionis, B (Oxford University Press (OUP), 2020-08-01)
    Ageing and parturition share common pathways, but their relationship remains poorly understood. Decidual cells undergo ageing as parturition approaches term, and these age-related changes may trigger labour. Mesenchymal stem/stromal cells (MSCs) are the predominant stem cell type in the decidua. Stem cell exhaustion is a hallmark of ageing, and thus ageing of decidual MSCs (DMSCs) may contribute to the functional changes in decidual tissue required for term spontaneous labour. Here, we determine whether DMSCs from patients undergoing spontaneous onset of labour (SOL-DMSCs) show evidence of ageing-related functional changes compared with those from patients not in labour (NIL-DMSCs), undergoing Caesarean section. Placentae were collected from term (37-40 weeks of gestation), SOL (n = 18) and NIL (n = 17) healthy patients. DMSCs were isolated from the decidua basalis that remained attached to the placenta after delivery. DMSCs displayed stem cell-like properties and were of maternal origin. Important cell properties and lipid profiles were assessed and compared between SOL- and NIL-DMSCs. SOL-DMSCs showed reduced proliferation and increased lipid peroxidation, migration, necrosis, mitochondrial apoptosis, IL-6 production and p38 MAPK levels compared with NIL-DMSCs (P < 0.05). SOL- and NIL-DMSCs also showed significant differences in lipid profiles in various phospholipids (phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine), sphingolipids (ceramide, sphingomyelin), triglycerides and acyl carnitine (P < 0.05). Overall, SOL-DMSCs had altered lipid profiles compared with NIL-DMSCs. In conclusion, SOL-DMSCs showed evidence of ageing-related reduced functionality, accumulation of cellular damage and changes in lipid profiles compared with NIL-DMSCs. These changes may be associated with term spontaneous labour.
  • Item
    Thumbnail Image
    Decidual mesenchymal stem/stromal cell-derived extracellular vesicles ameliorate endothelial cell proliferation, inflammation, and oxidative stress in a cell culture model of preeclampsia
    Zheng, S ; Shi, A ; Hill, S ; Grant, C ; Kokkinos, MI ; Murthi, P ; Georgiou, HM ; Brennecke, SP ; Kalionis, B (Elsevier, 2020-10-01)
    Oxidative stress and endothelial dysfunction contribute substantially to the pathogenesis of preeclampsia (PE). Decidual mesenchymal stem/stromal cells (DMSC), reportedly reduce endothelial cell dysfunction and alleviate PE-like symptoms in a murine model. However, as a therapeutic strategy, the use of whole DMSC presents significant technical limitations, which may be overcome by employing DMSC-secreted extracellular vesicles (DMSC_EV). DMSC_EV restoration of endothelial dysfunction through a paracrine effect may alleviate the clinical features of PE. OBJECTIVE: To determine whether DMSC-secreted, extracellular vesicles (DMSC_EV) restore endothelial cell function and reduce oxidative stress. METHODS: DMSC were isolated from the placentae of uncomplicated term pregnancies and DMSC_EV prepared by ultracentrifugation. Human umbilical vein endothelial cells (HUVEC) were treated with bacterial lipopolysaccharide (LPS), or with serum from PE patients, to model the effects of PE. DMSC_EV were then added to treated HUVEC and their growth profiles, inflammatory state, and oxidative stress levels measured. RESULTS: DMSC_EV displayed characteristic features of extracellular vesicles. In both LPS- and PE serum-treatment models, addition of DMSC_EV significantly increased HUVEC cell attachment and proliferation, and significantly reduced production of pro-inflammatory cytokine IL-6. The addition of DMSC_EV to LPS-treated HUVEC had no significant effect on total antioxidant capacity, superoxide dismutase levels or on lipid peroxidation levels. In contrast, the addition of DMSC_EV to PE serum-treated HUVEC resulted in a significant reduction in levels of lipid peroxidation. CONCLUSION: Addition of DMSC_EV had beneficial effects in both LPS- and PE serum- treated HUVEC but the two treatment models to induce endothelial cell dysfunction showed differences. The LPS treatment of HUVEC model may not accurately model the endothelial cell dysfunction characteristic of PE. Human cell culture models of PE show that DMSC_EV improve endothelial cell dysfunction in PE, but testing in in vivo models of PE is required.
  • Item
    Thumbnail Image
    The effect of breastfeeding on postpartum glucose tolerance and lipid profiles in women with gestational diabetes mellitus
    Shub, A ; Miranda, M ; Georgiou, HM ; McCarthy, EA ; Lappas, M (BMC, 2019-11-04)
    Background: We aimed to investigate the association of breastfeeding on postpartum glucose levels and lipid profiles in women diagnosed with gestational diabetes mellitus (GDM) and women without GDM. Methods: We performed a secondary analysis of a cohort study of 243 women, 159 women with GDM and 84 normally glucose tolerant women between 2012 and 2017. At approximately 6–10 weeks postpartum, we measured fasting blood glucose and plasma lipid levels. Breastfeeding behaviour was self-defined as exclusive breastfeeding or not exclusive breastfeeding. Results: The mean (SD) glucose in the group of women who breastfed exclusively was 4.6 (0.49) mmol/L, compared to 4.9 (0.58) mmol/L (95% CI 0.45, 0.15, p < 0.001) among women who did not exclusively breastfeed. Among women with GDM, the reduction in fasting glucose in women who were breastfeeding was 0.22 mmol/L (95% CI 0.39, 0.05, p = 0.004), and in women who were not GDM, the reduction was 0.14 mmol/L (95% CI 0.37, 0.09, p = 0.24,). After adjustment for GDM status in pregnancy, maternal body mass index (BMI), maternal age and ethnicity, and exclusive breastfeeding was associated with a decreased fasting glucose of 0.19 (95% CI 0.318, 0.061, p = 0.004). After similar adjustment, there was no significant difference in triglycerides, high density lipoprotein cholesterol or low-density lipoprotein cholesterol between women who were breastfeeding and women who were not breastfeeding. Conclusions: Breastfeeding is associated with a reduction in fasting glucose levels postpartum, but not maternal lipid profile. Breastfeeding may play a role in reducing glucose intolerance in women who have had GDM.
  • Item
    Thumbnail Image
    Postpartum circulating cell-free insulin DNA levels are higher in women with previous gestational diabetes mellitus who develop type 2 diabetes in later life
    Lappas, M ; Georgiou, H ; Wilcox, J ; Permezel, M ; Shub, A ; Maynard, C-L ; Joglekar, M ; HARDIKAR, A (Hindawi Publishing Corporation, 2019)
    Background. Women with previous gestational diabetes mellitus (GDM) have evidence of postpartum β-cell dysfunction, which increases their risk of developing type 2 diabetes (T2DM) later in life. Elevated levels of circulating cell-free preproinsulin (INS) DNA correlate with dying β-cells in both mice and humans. The aim of this study was to determine if cell-free circulating INS DNA levels are higher in women with previous GDM who develop T2DM. Methods. We used droplet digital (dd) PCR to measure the levels of cell-free circulating methylated and unmethylated INS DNA in plasma from 97 women with normal glucose tolerance (NGT), 12 weeks following an index GDM pregnancy. Women were assessed for up to 10 years for the development of T2DM. Results. In the follow-up period, 22% of women developed T2DM. Compared with NGT women, total cell-free INS DNA levels were significantly higher in women who developed T2DM (P = 0.02). There was no difference in cell-free circulating unmethylated and methylated INS DNA levels between NGT women and women who developed T2DM (P = 0.09 and P = 0.07, respectively). Conclusions. In women with a previous index GDM pregnancy, postpartum levels of cell-free circulating INS DNA are significantly higher in those women who later developed T2DM.
  • Item
    Thumbnail Image
    Placental Vitamin D-Binding Protein Expression in Human Idiopathic Fetal Growth Restriction
    Wookey, AF ; Chollangi, T ; Yong, HEJ ; Kalionis, B ; Brennecke, SP ; Murthi, P ; Georgiou, HM (HINDAWI LTD, 2017)
    Vitamin D-binding protein is a multifunctional serum protein with multiple actions related to normal health. Vitamin D-binding protein transports vitamin D and influences the metabolism of this key hormone but it also has additional immunomodulatory and actin-clearing properties. We investigated whether vitamin D-binding protein expression is altered in fetal growth restriction-associated placental dysfunction. Protein was extracted from 35 placentae derived from 17 healthy control subjects and 18 gestation-matched subjects with fetal growth restriction (FGR). FGR subjects were further subdivided as idiopathic (n = 9) and nonidiopathic (n = 9). Vitamin D-binding protein and 25(OH) vitamin D were measured by ELISA and normalized to protein concentration. The results showed significantly reduced levels of placental vitamin D-binding protein (control versus FGR, p < 0.05, Student's t-test) that were strongly associated with idiopathic fetal growth restriction (p < 0.01, Kruskal-Wallis), whereas levels of vitamin D-binding protein were not associated with placental 25(OH) vitamin D stores (p = 0.295, Pearson's correlation). As such, vitamin D-binding protein may be a factor in unexplained placental dysfunction associated with idiopathic fetal growth restriction and may potentially serve as a biomarker of this disease.
  • Item
    Thumbnail Image
    Omentin-1 Is Decreased in Maternal Plasma, Placenta and Adipose Tissue of Women with Pre-Existing Obesity
    Barker, G ; Lim, R ; Georgiou, HM ; Lappas, M ; Calbet, JAL (PUBLIC LIBRARY SCIENCE, 2012-08-28)
    OBJECTIVE: The aim of this study was to determine (i) the effect of maternal obesity and gestational diabetes mellitus (GDM) on (i) the circulating levels of omentin-1 in cord and maternal plasma, and (ii) gene expression and release of omentin-1 from human placenta and adipose tissue. The effect of pregnancy on circulating omentin-1 levels was also determined. DESIGN: Omentin-1 levels were measured in maternal and cord plasma from obese and non-obese normal glucose tolerant women (NGT; n = 44) and women with GDM (n = 39) at the time of term elective Caesarean section. Placenta and adipose tissue expression and release of omentin-1 was measured from 22 NGT and 22 GDM women collected at the time of term elective Caesarean section. Omentin-1 levels were also measured in maternal plasma from 13 NGT women at 11 and 28 weeks gestation and 7 weeks postpartum. RESULTS: Maternal obesity was associated with significantly lower omentin-1 levels in maternal plasma; however, there was no effect of maternal obesity on cord omentin levels. Omentin-1 gene expression was lower in placenta and adipose tissue obtained from women with pre-existing obesity. In addition to this, adipose tissue release of omentin-1 was significantly lower from obese pregnant women. Omentin-1 levels were significantly lower in non-obese GDM compared to non-obese NGT women. However, there was no difference in omentin-1 levels between obese NGT and obese GDM women. There was no effect of GDM on cord omentin levels, and placental and adipose tissue omentin-1 expression. Maternal omentin-1 levels were negatively correlated with fetal birthweight and fetal ponderal index. CONCLUSIONS: The data presented in this study demonstrate that pre-existing maternal obesity is associated with lower omentin-1 expression in placenta, adipose tissue and maternal plasma. Alteration in omentin-1 in pregnancy may influence the development of metabolic disorders in offspring later in life.