Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    No Preview Available
    Plasma lipids are dysregulated preceding diagnosis of preeclampsia or delivery of a growth restricted infant
    Bartho, LA ; Keenan, E ; Walker, SP ; MacDonald, TM ; Nijagal, B ; Tong, S ; Kaitu'u-Lino, TJ (ELSEVIER, 2023-08)
    BACKGROUND: Lipids serve as multifunctional metabolites that have important implications for the pregnant mother and developing fetus. Abnormalities in lipids have emerged as potential risk factors for pregnancy diseases, such as preeclampsia and fetal growth restriction. The aim of this study was to assess the potential of lipid metabolites for detection of late-onset preeclampsia and fetal growth restriction. METHODS: We used a case-cohort of 144 maternal plasma samples at 36 weeks' gestation from patients before the diagnosis of late-onset preeclampsia (n = 22), delivery of a fetal growth restricted infant (n = 55, defined as <5th birthweight centile), gestation-matched controls (n = 72). We performed liquid chromatography-tandem mass spectrometry (LC-QQQ) -based targeted lipidomics to identify 421 lipids, and fitted logistic regression models for each lipid, correcting for maternal age, BMI, smoking, and gestational diabetes. FINDINGS: Phosphatidylinositol 32:1 (AUC = 0.81) and cholesterol ester 17:1 (AUC = 0.71) best predicted the risk of developing preeclampsia or delivering a fetal growth restricted infant, respectively. Five times repeated five-fold cross validation demonstrated the lipids alone did not out-perform existing protein biomarkers, soluble tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) for the prediction of preeclampsia or fetal growth restriction. However, lipids combined with sFlt-1 and PlGF measurements improved disease prediction. INTERPRETATION: This study successfully identified 421 lipids in maternal plasma collected at 36 weeks' gestation from participants who later developed preeclampsia or delivered a fetal growth restricted infant. Our results suggest the predictive capacity of lipid measurements for gestational disorders holds the potential to improve non-invasive assessment of maternal and fetal health. FUNDING: This study was funded by a grant from National Health and Medical Research Council.
  • Item
    No Preview Available
    Circulating Chemerin Is Elevated in Women With Preeclampsia
    Bartho, LA ; Kandel, M ; Walker, SP ; Cluver, CA ; Hastie, R ; Bergman, L ; Pritchard, N ; Cannon, P ; Nguyen, T-V ; Wong, GP ; MacDonald, TM ; Keenan, E ; Hannan, NJ ; Tong, S ; Kaitu'u-Lino, TJ (ENDOCRINE SOC, 2023-03-13)
    BACKGROUND: Preeclampsia is a severe complication of pregnancy. Chemerin is an adipokine secreted from adipose tissue and highly expressed in placenta. This study evaluated the biomarker potential of circulating chemerin to predict preeclampsia. METHODS: Maternal plasma and placenta were collected from women with early-onset preeclampsia (<34 weeks), with preeclampsia and eclampsia, or before preeclampsia diagnosis (36 weeks). Human trophoblast stem cells were differentiated into syncytiotrophoblast or extravillous trophoblasts across 96 hours. Cells were cultured in 1% O2 (hypoxia) or 5% O2 (normoxia). Chemerin was measured by enzyme-linked immunosorbent assay (ELISA) and RARRES2 (gene coding chemerin) by reverse transcription-quantitative polymerase chain reaction. RESULTS: Circulating chemerin was increased in 46 women with early-onset preeclampsia (<34 weeks) compared to 17 controls (P < .0006). Chemerin was increased in placenta from 43 women with early-onset preeclampsia compared to 24 controls (P < .0001). RARRES2 was reduced in placenta from 43 women with early-onset preeclampsia vs 24 controls (P < .0001). Chemerin was increased in plasma from 26 women with established preeclampsia (P = .006), vs 15 controls. Circulating chemerin was increased in 23 women who later developed preeclampsia vs 182 who did not (P = 3.23 × 10-6). RARRES2 was reduced in syncytiotrophoblast (P = .005) or extravillous trophoblasts (P < .0001). Hypoxia increased RARRES2 expression in syncytiotrophoblast (P = .01) but not cytotrophoblast cells. CONCLUSIONS: Circulating chemerin was elevated in women with early-onset preeclampsia, established preeclampsia, and preceding preeclampsia diagnosis of preeclampsia. RARRES2 was dysregulated in placenta complicated by preeclampsia and may be regulated through hypoxia. Chemerin may have potential as a biomarker for preeclampsia but would need to be combined with other biomarkers.
  • Item
    No Preview Available
    Endothelial protein C receptor is increased in preterm preeclampsia and fetal growth restriction
    Andres, F ; Hannan, NJ ; Walker, SP ; MacDonald, TM ; Wong, GP ; Murphy, C ; Cannon, P ; Kandel, M ; Masci, J ; Nguyen, T-V ; Abboud, A ; Idzes, D ; Kyritsis, V ; Pritchard, N ; Tong, S ; Kaituu-Lino, TJ (WILEY, 2022-12)
    Placental dysfunction is the leading cause of both preeclampsia and fetal growth restriction. This study aimed to characterize endothelial protein C receptor (EPCR) in preterm preeclampsia, term preeclampsia, and fetal growth restriction (defined by delivery of a small for gestational age [SGA] infant [<10% birthweight centile]) and examine its regulation in primary syncytiotrophoblast. Placental EPCR mRNA and protein were significantly increased in patients with preterm preeclampsia (<34 weeks gestation) compared to gestation-matched controls (p < .0001). In the plasma, EPCR was also significantly elevated (p = .01) in established preterm preeclampsia while its substrate, protein C (PC) was significantly reduced (p = .0083). Placentas from preterm small for gestational age (SGA) cases, had elevated EPCR mRNA expression (p < .0001) relative to controls. At 36 weeks, no significant changes in plasma EPCR were detected in samples from patients destined to develop preeclampsia or deliver an SGA infant at term. In terms of syncytiotrophoblast, hypoxia significantly increased EPCR mRNA expression (p = .008), but Tumor Necrosis Factor Alpha (TNF-α) decreased EPCR mRNA. Interleukin-6 (IL-6) had no significant effect on EPCR mRNA expression. When isolated syncytiotrophoblast was treated with metformin under hypoxia (1% O2 ) or normoxia (8% O2 ), EPCR mRNA expression was significantly reduced (p = .008) relative to control. In conclusion, EPCR is markedly elevated in the placenta and the circulation of patients with established preterm preeclampsia and placental increases may be associated with hypoxia. Additionally, fetal growth-restricted pregnancies (as defined by the delivery of an SGA infant) also demonstrated elevated placental EPCR.
  • Item
    No Preview Available
    Estimation of neonatal body fat percentage predicts neonatal hypothermia better than birthweight centile
    Banting, SA ; Dane, KM ; Charlton, JK ; Tong, S ; Hui, L ; Middleton, AL ; Gibson, LK ; Walker, SP ; MacDonald, TM (TAYLOR & FRANCIS LTD, 2022)
    INTRODUCTION: PEA POD™ air displacement plethysmography quickly and noninvasively estimates neonatal body fat percentage (BF%). Low PEA POD™ BF% predicts morbidity better than classification as small-for-gestational-age (SGA; <10th centile), but PEA PODs are not widely available. We examined whether skinfold measurements could effectively identify neonates at risk; comparing skinfold BF%, PEA POD™ BF% and birthweight centiles' prediction of hypothermia - a marker of reduced in utero nutrition. METHODS: Neonates had customized birthweight centiles calculated, and BF% prospectively estimated by: (i) triceps and subscapular skinfolds using sex-specific equations; and (ii) PEA POD™. Medical record review identified hypothermic (<36.5 °C) episodes. RESULTS: 42/149 (28%) neonates had hypothermia. Skinfold BF%, with an area under the curve (AUC) of 0.66, predicted hypothermia as well as PEA POD™ BF% (AUC = 0.62) and birthweight centile (AUC = 0.61). Birthweight <10th centile demonstrated 11.9% sensitivity, 38.5% positive predictive value (PPV) and 92.5% specificity for hypothermia. At equal specificity, skinfold and PEA POD™ BF% more than doubled sensitivity (26.2%) and PPV increased to 57.9%. CONCLUSION: Neonatal BF% performs better to predict neonatal hypothermia than birthweight centile, and may be a better measure of true fetal growth restriction. Estimation of neonatal BF% by skinfold measurements is an inexpensive alternative to PEA POD™.
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    Placental galectin-3 is reduced in early-onset preeclampsia
    Kandel, M ; Tong, S ; Walker, SP ; Cannon, P ; Nguyen, T-V ; MacDonald, TM ; Hannan, NJ ; Kaitu'u-Lino, TJ ; Bartho, LA (FRONTIERS MEDIA SA, 2022-10-14)
    Preeclampsia is a disease of pregnancy responsible for significant maternal and neonatal mortality. Galectin-3 is a β-Galactoside binding protein. This study aimed to characterise galectin-3 in women with preeclampsia and human trophoblast stem cells (hTSCs). Galectin-3 was measured in placental lysates and plasma collected from patients with early-onset preeclampsia (delivered <34 weeks' gestation) and gestation matched controls. Placental galectin-3 protein was significantly reduced in 43 women with early-onset preeclampsia compared to 21 controls. mRNA expression of LGALS3 (galectin-3 encoding gene) was reduced in 29 women with early-onset preeclampsia, compared to 18 controls (p = 0.009). There was no significant difference in plasma galectin-3 protein in 46 women with early-onset preeclampsia compared to 20 controls. In a separate cohort of samples collected at 36 weeks' gestation, circulating galectin-3 was not altered in 23 women who later developed preeclampsia, versus 182 who did not. In syncytialised hTSCs, hypoxia increased mRNA expression of LGALS3 (p = 0.01). Treatment with inflammatory cytokines (TNF-α and IL-6) had no effect on LGALS3 mRNA expression. However, TNF-α treatment caused an increase in mRNA expression of LGALS3BP (galectin-3 binding protein encoding gene) in hTSCs (p = 0.03). This study showed a reduction of galectin-3 in placenta from pregnancies complicated by early-onset preeclampsia. LGALS3 mRNA expression was dysregulated by hypoxia exposure in placental stem cells.
  • Item
    Thumbnail Image
    PSG7 and 9 (Pregnancy-Specific β-1 Glycoproteins 7 and 9): Novel Biomarkers for Preeclampsia
    Kandel, M ; MacDonald, TM ; Walker, SP ; Cluver, C ; Bergman, L ; Myers, J ; Hastie, R ; Keenan, E ; Hannan, NJ ; Cannon, P ; Nguyen, T-V ; Pritchard, N ; Tong, S ; Kaitu'u-Lino, TJ (WILEY, 2022-04-05)
    Background Preeclampsia is pregnancy specific, involving significant maternal endothelial dysfunction. Predictive biomarkers are lacking. We evaluated the biomarker potential, expression, and function of PSG7 (pregnancy-specific β-1 glycoprotein 7) and PSG9 (pregnancy-specific β-1 glycoprotein 9) in preeclampsia. Methods and Results At 36 weeks gestation preceding term preeclampsia diagnosis, PSG7 and PSG9 (in Australian cohorts of n=918 and n=979, respectively) were significantly increased before the onset of term preeclampsia (PSG7, P=0.013; PSG9, P=0.0011). In samples collected at 28 to 32 weeks from those with preexisting cardiovascular disease and at high risk of preeclampsia (Manchester Antenatal Vascular Service, UK cohort, n=235), both PSG7 and PSG9 were also significantly increased preceding preeclampsia onset (PSG7, P<0.0001; PSG9, P=0.0003) relative to controls. These changes were validated in the plasma and placentas of patients with established preeclampsia who delivered at <34 weeks gestation (PSG7, P=0.0008; PSG9, P<0.0001). To examine whether PSG7 and PSG9 are associated with increasing disease severity, we measured them in a cohort from South Africa stratified for this outcome, the PROVE (Preeclampsia Obstetric Adverse Events) cohort (n=72). PSG7 (P=0.0027) and PSG9 (P=0.0028) were elevated among patients who were preeclamptic with severe features (PROVE cohort), but not significantly changed in those without severe features or with eclampsia. In syncytialized first trimester cytotrophoblast stem cells, exposure to TNFα (tumor necrosis factor α) or IL-6 (interleukin 6) significantly increased the expression and secretion of PSG7 and PSG9. In contrast, when we treated primary endothelial cells with recombinant PSG7 and PSG9, we only observed modest changes in Flt-1 (FMS-like tyrosine kinase-1) expression and Plgf (placental growth factor) expression, and no other effects on proangiogenic/antiangiogenic or endothelial dysfunction markers were observed. Conclusions Circulating PSG7 and PSG9 are increased before preeclampsia onset and among those with established disease with their production and release potentially driven by placental inflammation.
  • Item
    Thumbnail Image
    Clinical tools and biomarkers to predict preeclampsia
    MacDonald, TM ; Walker, SP ; Hannan, NJ ; Tong, S ; Kaitu'u-Lino, TJ (ELSEVIER, 2022-01)
    Preeclampsia is pregnancy-specific, and significantly contributes to maternal, and perinatal morbidity and mortality worldwide. An effective predictive test for preeclampsia would facilitate early diagnosis, targeted surveillance and timely delivery; however limited options currently exist. A first-trimester screening algorithm has been developed and validated to predict preterm preeclampsia, with poor utility for term disease, where the greatest burden lies. Biomarkers such as sFlt-1 and placental growth factor are also now being used clinically in cases of suspected preterm preeclampsia; their high negative predictive value enables confident exclusion of disease in women with normal results, but sensitivity is modest. There has been a concerted effort to identify potential novel biomarkers that might improve prediction. These largely originate from organs involved in preeclampsia's pathogenesis, including placental, cardiovascular and urinary biomarkers. This review outlines the clinical imperative for an effective test and those already in use and summarises current preeclampsia biomarker research.
  • Item
    Thumbnail Image
    Circulating SPINT1 Is Reduced in a Preeclamptic Cohort with Co-Existing Fetal Growth Restriction.
    Murphy, CN ; Cluver, CA ; Walker, SP ; Keenan, E ; Hastie, R ; MacDonald, TM ; Hannan, NJ ; Brownfoot, FC ; Cannon, P ; Tong, S ; Kaitu'u-Lino, TJ (MDPI AG, 2022-02-09)
    Fetal growth restriction (FGR), when undetected antenatally, is the biggest risk factor for preventable stillbirth. Maternal circulating SPINT1 is reduced in pregnancies, which ultimately deliver small for gestational age (SGA) infants at term (birthweight < 10th centile), compared to appropriate for gestational age (AGA) infants (birthweight ≥ 10th centile). SPINT1 is also reduced in FGR diagnosed before 34 weeks' gestation. We hypothesised that circulating SPINT1 would be decreased in co-existing preterm preeclampsia and FGR. Plasma SPINT1 was measured in samples obtained from two double-blind, randomised therapeutic trials. In the Preeclampsia Intervention with Esomeprazole trial, circulating SPINT1 was decreased in women with preeclampsia who delivered SGA infants (n = 75, median = 18,857 pg/mL, IQR 10,782-29,890 pg/mL, p < 0.0001), relative to those delivering AGA (n = 22, median = 40,168 pg/mL, IQR 22,342-75,172 pg/mL). This was confirmed in the Preeclampsia Intervention 2 with metformin trial where levels of SPINT1 in maternal circulation were reduced in SGA pregnancies (n = 95, median = 57,764 pg/mL, IQR 42,212-91,356 pg/mL, p < 0.0001) compared to AGA controls (n = 40, median = 107,062 pg/mL, IQR 70,183-176,532 pg/mL). Placental Growth Factor (PlGF) and sFlt-1 were also measured. PlGF was significantly reduced in the SGA pregnancies, while ratios of sFlt-1/SPINT1 and sFlt1/PlGF were significantly increased. This is the first study to demonstrate significantly reduced SPINT1 in co-existing FGR and preeclamptic pregnancies.
  • Item
    No Preview Available
    PSG9-A NOVEL BIOMARKER DERANGED IN PREECLAMPSIA
    Kandel, M ; Walker, S ; MacDonald, T ; Cluver, C ; Bergman, L ; Myers, J ; Hastie, R ; Keenan, E ; Cannon, P ; Nguyen, T-V ; Hannan, N ; Pritchard, N ; Tong, S ; Kaitu'u-Lino, T (W B SAUNDERS CO LTD, 2021-09-01)