Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2
    Tapia, A ; Salamonsen, LA ; Manuelpillai, U ; Dimitriadis, E (OXFORD UNIV PRESS, 2008-08)
    BACKGROUND: Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that is essential for blastocyst implantation in mice. It has been suggested that LIF may play a role in human first trimester extravillous trophoblast (EVT) invasion. The aim of the present study was to establish whether LIF induces changes in EVT function related to invasiveness. METHODS: Primary first trimester human EVT cell cultures were treated with/without LIF and the effects on cell adhesion to fibronectin (FN), vitronectin (VN) and laminin (LN) were assessed. Transcript levels of integrin subunits that mediate cell adhesion to these extracellular matrix (ECM) elements were determined by real-time RT-PCR. Matrix metalloproteinase (MMP)2 and MMP9 secretion was assessed by gelatine zymography and tissue inhibitors matrix metalloproteinase (TIMP) -1 and TIMP-2 secretion by enzyme-linked immunosorbent assay. RESULTS: EVT cells showed increased adhesion to FN, VN and LN ECM elements in response to LIF (20, 20 and 29%, respectively, P < 0.05 FN and VN compared to control; and P < 0.001 LN compared to control). Integrin beta(4) mRNA levels decreased by 50% following LIF treatment (P < 0.001 versus control). MMP2 and MMP9 secretion was not affected by LIF but LIF did increase secretion of TIMP-1 and -2 (P < 0.001 versus control). LIF stimulated the phosphorylation of signal transducer and activator of transcription (STAT) 3 protein while it did not affect STAT3 protein abundance. The addition of a LIF inhibitor attenuated the LIF-induced STAT3 phosphorylation in EVT. CONCLUSION: The results suggest that LIF can regulate EVT invasion, suggesting an important role in early placental development.
  • Item
    Thumbnail Image
    Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window
    Dimitriadis, E ; Sharkey, AM ; Tan, YL ; Salamonsen, LA ; Sherwin, JRA (BMC, 2007-11-29)
    BACKGROUND: Uterine receptivity and embryo implantation are critical in the establishment of pregnancy. The diagnosis of endometrial fertility requires more precise measurements of endometrial receptivity. Interleukin (IL-11) and leukemia inhibitory factor (LIF) are essential for murine implantation and signal via intracellular phosphorylation (p) of STAT3 in the endometrium. Both cytokines are present in the endometrium of women duiring the receptive window. Endometrial IL-11, IL-11 receptor alpha (IL-11Ralpha), LIF and pSTAT3 in women with primary unexplained infertility was compared to normal fertile women during the implantation window. METHODS: LH timed endometrial biopsies (LH+6 to LH+10) were collected from women with unexplained infertility and normal fertility. pSTAT3, IL-11, IL-11Ralpha and LIF production was determined by immunohistochemistry. Staining intensity was determoned by two independent observers blind to the fertility status of the patient from whom the biopsy was taken. Staining intensity and heterogeneity in each of the endometrial compartments (epithelium; stroma, including decidualized stromal cells; and vasculature) was assessed. The Mann-Whitney U test was used to analyze IL-11, pSTAT3, IL-11Ralpha and LIF immunostaining intensities in the samples. RESULTS: IL-11, IL-11Ralpha and LIF were present predominantly in glandular epithelium, whilst luminal epithelium showed patchy staining. pSTAT3 was present in both glandular epithelium and stroma. IL-11 and pSTAT3 immunostaining was significantly lower in glandular epithelium in infertile women compared to controls (P < 0.05) whilst IL-11Ralpha and LIF staining did not differ. CONCLUSION: This is the first demonstration of reduced endometrial pSTAT3 and IL-11 in some women with unexplained infertility. This suggests IL-11 and pSTAT3 may be involved in the secretory transformation of glandular epithelium during receptivity. Reduced IL-11 production and STAT3 phosphorylation may contribute to unexplained infertility in some women.
  • Item
    Thumbnail Image
    A distinct cohort of the TGFβ superfamily members expressed in human endometrium regulate decidualization
    Stoikos, CJ ; Harrison, CA ; Salamonsen, LA ; Dimitriadis, E (OXFORD UNIV PRESS, 2008-06)
    BACKGROUND: Successful blastocyst implantation requires the differentiation of human endometrial stromal cells (HESC), a process known as decidualization. Activin A, a transforming growth factor beta (TGFbeta) superfamily member, enhances HESC decidualization and localizes to decidual cells in human endometrium. Other TGFbeta superfamily members, including BMP2, BMP4, BMP7, GDF5, GDF8, GDF11, TGFbetas and Nodal, may also play a role during decidualization. This study aimed to identify these TGFbeta family members in human endometrium, and to determine whether they are involved in human decidualization. METHODS: Protein localization of TGFbeta family members was examined in secretory phase human endometrium and first trimester decidua by immunohistochemistry. mRNA expression was examined in HESC. Activin inhibitors (Activin-M108A/SB431542) with differing specificities for the other TGFbeta members under consideration were applied during HESC decidualization in vitro. The secretion levels of potential TGFbeta superfamily members were measured during decidualization, and recombinant proteins added to examine their effect. RESULTS: This study has identified BMP2, BMP4, BMP7, GDF5, GDF8 and GDF11 but not Nodal in secretory phase human endometrium, but only BMP2, GDF5 and TGFbeta1 protein were detected in decidual cells. All ligands except Nodal were expressed by cultured HESC. Both inhibitors significantly reduced decidualization validating the role of activin, but potentially also other TGFbeta members, during decidualization. BMP2 and TGFbeta1 secretion increased during HESC decidualisation and exogenous administration of these proteins significantly enhanced decidualization in vitro. CONCLUSIONS: Like activin, BMP2 and TGFbeta1 are likely to be involved in HESC decidualization. This is the first study to identify and localize BMP4, BMP7, GDF5, GDF8 and GDF11 in secretory phase human endometrium. Understanding the factors critical for the implantation process is needed for improving fertility and pregnancy outcomes.
  • Item
    Thumbnail Image
    Placenta-specific Methylation of the Vitamin D 24-Hydroxylase Gene IMPLICATIONS FOR FEEDBACK AUTOREGULATION OF ACTIVE VITAMIN D LEVELS AT THE FETOMATERNAL INTERFACE
    Novakovic, B ; Sibson, M ; Ng, HK ; Manuelpillai, U ; Rakyan, V ; Down, T ; Beck, S ; Fournier, T ; Evain-Brion, D ; Dimitriadis, E ; Craig, JM ; Morley, R ; Saffery, R (ELSEVIER, 2009-05-29)
    Plasma concentrations of biologically active vitamin D (1,25-(OH)(2)D) are tightly controlled via feedback regulation of renal 1alpha-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)(2)D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface. In this study, we investigated the methylation status of genes regulating vitamin D bioavailability and activity in the placenta. No methylation of the VDR (vitamin D receptor) and CYP27B1 genes was found in any placental tissues. In contrast, the CYP24A1 gene is methylated in human placenta, purified cytotrophoblasts, and primary and cultured chorionic villus sampling tissue. No methylation was detected in any somatic human tissue tested. Methylation was also evident in marmoset and mouse placental tissue. All three genes were hypermethylated in choriocarcinoma cell lines, highlighting the role of vitamin D deregulation in this cancer. Gene expression analysis confirmed a reduced capacity for CYP24A1 induction with promoter methylation in primary cells and in vitro reporter analysis demonstrated that promoter methylation directly down-regulates basal promoter activity and abolishes vitamin D-mediated feedback activation. This study strongly suggests that epigenetic decoupling of vitamin D feedback catabolism plays an important role in maximizing active vitamin D bioavailability at the fetomaternal interface.