Obstetrics and Gynaecology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    NOD1 and NOD2 Regulate Proinflammatory and Prolabor Mediators in Human Fetal Membranes and Myometrium via Nuclear Factor-Kappa B
    Lappas, M (OXFORD UNIV PRESS INC, 2013-07)
    Preterm birth remains one of the most important issues facing perinatal medicine today, with chronic inflammation and/or infection being the biggest etiological factor. The nucleotide oligomerization domain (NOD) intracellular molecules recognize a wide range of microbial products as well as other intracellular danger signals, thereby initiating inflammation through activation of nuclear factor KB (NFKB), a central regulator of the terminal processes of human labor and delivery. The aims of this study were to determine the effect of 1) human labor, proinflammatory cytokines, and bacterial endotoxin LPS on NOD1 and NOD2 expression and 2) NOD1 and NOD2 activation on the expression of prolabor mediators in human fetal membranes and myometrium. NOD1 and NOD2 expression was significantly higher in fetal membranes and myometrium after spontaneous labor when compared to nonlaboring tissues. Bacterial endotoxin LPS and the proinflammatory cytokines TNF and IL1B significantly increased NOD2, but not NOD1, expression. Furthermore, LPS-induced NOD2 expression was decreased by the NFKB inhibitor BAY 11-7082. In both fetal membranes and myometrium, the NOD1 ligand bacterial iE-DAP and the NOD2 ligand bacterial MDP significantly increased the expression and secretion of proinflammatory cytokines (IL6 and IL8), cyclooxygenase (PTGS2) expression and subsequent release of prostaglandins PGE2 and PGF2alpha, and the expression and activity of MMP9. The effects of these NOD1 and NOD2 ligands were mediated via NFKB, as 1) both iE-DAP and MDP significantly increased NFKB activation and 2) the NFKB inhibitor BAY 11-7082 attenuated iE-DAP- and MDP-induced expression and secretion of prolabor mediators. In conclusion, NOD1 and NOD2 are increased in laboring fetal membranes and myometrium and with bacterial infection. Agonist activation of NOD1 and NOD2 by bacterial products leads to NFKB activation and transcription of NFKB induced prolabor genes. NOD1 and NOD2 may thus represent therapeutic targets for the treatment and/or management of preterm birth.
  • Item
    No Preview Available
    A Novel Role for FOXO3 in Human Labor: Increased Expression in Laboring Myometrium, and Regulation of Proinflammatory and Prolabor Mediators in Pregnant Human Myometrial Cells
    Lim, R ; Barker, G ; Lappas, M (OXFORD UNIV PRESS INC, 2013-06)
    Preterm birth is the leading factor causing neonatal mortality and morbidity. Inflammation plays a central role in stimulating uterine contractility, which is responsible for approximately one-third of all preterm births. Recent studies have shown that the transcription factor Forkhead box O3 (FOXO3) regulates inflammation in nongestational tissues such as adipocytes and hepatocytes. Thus, in this study, we sought to determine the effect of 1) human term labor on myometrial FOXO3 expression and 2) FOXO3 inhibition and FOXO3 overexpression on proinflammatory and prolabor mediators in human myometrial cells. Higher FOXO3 gene and protein expression were detected in myometrium obtained from women in labor when compared to samples taken from nonlaboring women. Myometrial cells were isolated from pregnant human myometrium, and FOXO3 silencing was achieved using siRNA and overexpression using a cDNA clone. We found that the loss of FOXO3 in myometrial cells was associated with a significant decrease in IL1B-induced IL6 and IL8 expression and production, cyclooxygenase ([COX]-2, official symbol PTGS2) expression and subsequent prostaglandin (PGE2 and PGF2alpha) release, and matrix metalloproteinase 9 (MMP9) and mRNA expression and activity. Conversely, FOXO3 overexpression increased cytokine expression and secretion, prostaglandin production, and MMP9 expression in myometrial cells treated with IL1B. In summary, we have identified FOXO3 as an upstream mediator of inflammation in human myometrium. Thus, FOXO3 may present an alternative therapeutic target for preventing preterm birth and its associated morbidity and mortality.