Veterinary and Agricultural Sciences Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 384
  • Item
    Thumbnail Image
    Reducing Calf Mortality in Ethiopia.
    Wong, JT ; Lane, JK ; Allan, FK ; Vidal, G ; Vance, C ; Donadeu, M ; Jackson, W ; Nwankpa, V ; Abera, S ; Mekonnen, GA ; Kebede, N ; Admassu, B ; Amssalu, K ; Lemma, A ; Fentie, T ; Smith, W ; Peters, AR (MDPI AG, 2022-08-19)
    Morbidity and mortality of young stock present economic and production challenges to livestock producers globally. In Ethiopia, calf morbidity and mortality rates, particularly due to diarrhea and respiratory disease, are high, limiting production, incomes, and the ability of farmers to improve their livelihoods. In this paper, we present findings from the combined experience of the Young Stock Mortality Reduction Consortium, which conducted epidemiological and intervention testing in calves across three production systems. This innovative alliance identified Cryptosporidium parvum and E. Coli K99 as the most common causes of diarrhea in pastoral and peri-urban calves; Strongyloides spp. as the most common fecal parasite in mixed crop-livestock and peri-urban calves; and bovine adenovirus, parainfluenza virus-3, and bovine respiratory syncytial virus as the most common respiratory pathogens in peri-urban calves. Furthermore, by improving producer knowledge with respect to fundamental livestock husbandry, feeding, housing, and neonatal care practices, calf mortality risk across production systems was reduced by 31.4 to 71.4% compared to baseline (between 10.5 and 32.1%), whereas risk of diarrhea was reduced by 52.6-75.3% (baseline between 11.4 and 30.4%) and risk of respiratory disease was reduced by 23.6-80.8% (baseline between 3.3 and 16.3%). These findings have informed scaling strategies and can potentially contribute to improved livestock productivity and human livelihoods in Ethiopia.
  • Item
    Thumbnail Image
    Combining NDVI and Bacterial Blight Score to Predict Grain Yield in Field Pea.
    Zhao, H ; Pandey, BR ; Khansefid, M ; Khahrood, HV ; Sudheesh, S ; Joshi, S ; Kant, S ; Kaur, S ; Rosewarne, GM (Frontiers Media SA, 2022)
    Field pea is the most commonly grown temperate pulse crop, with close to 15 million tons produced globally in 2020. Varieties improved through breeding are important to ensure ongoing improvements in yield and disease resistance. Genomic selection (GS) is a modern breeding approach that could substantially improve the rate of genetic gain for grain yield, and its deployment depends on the prediction accuracy (PA) that can be achieved. In our study, four yield trials representing breeding lines' advancement stages of the breeding program (S0, S1, S2, and S3) were assessed with grain yield, aerial high-throughput phenotyping (normalized difference vegetation index, NDVI), and bacterial blight disease scores (BBSC). Low-to-moderate broad-sense heritability (0.31-0.71) and narrow-sense heritability (0.13-0.71) were observed, as the estimated additive and non-additive genetic components for the three traits varied with the different models fitted. The genetic correlations among the three traits were high, particularly in the S0-S2 stages. NDVI and BBSC were combined to investigate the PA for grain yield by univariate and multivariate GS models, and multivariate models showed higher PA than univariate models in both cross-validation and forward prediction methods. A 6-50% improvement in PA was achieved when multivariate models were deployed. The highest PA was indicated in the forward prediction scenario when the training population consisted of early generation breeding stages with the multivariate models. Both NDVI and BBSC are commonly used traits that could be measured in the early growth stage; however, our study suggested that NDVI is a more useful trait to predict grain yield with high accuracy in the field pea breeding program, especially in diseased trials, through its incorporation into multivariate models.
  • Item
    Thumbnail Image
    Alleviation of cadmium toxicity in Zea mays L. through up-regulation of growth, antioxidant defense system and organic osmolytes under calcium supplementation.
    Kaleem, M ; Shabir, F ; Hussain, I ; Hameed, M ; Ahmad, MSA ; Mehmood, A ; Ashfaq, W ; Riaz, S ; Afzaal, Z ; Maqsood, MF ; Iqbal, U ; Shah, SMR ; Irshad, M ; Abd‐Elhakim, Y (Public Library of Science (PLoS), 2022)
    Calcium (Ca) is a macronutrient and works as a modulator to mitigate oxidative stress induced by heavy metals. In this study, we investigated the role of Ca to ameliorate the Cd toxicity in Zea mays L. by modulating the growth, physio-biochemical traits, and cellular antioxidant defense system. Maize genotype Sahiwal-2002 was grown under a controlled glasshouse environment with a day/night temperature of 24 ± 4°C/14 ± 2°C in a complete randomized design with three replications and two Cd levels as (0 and 150 μM) and six regimes of Ca (0, 0.5, 1, 2.5, 5, and 10 mM). Maize seedlings exposed to Cd at 150 μM concentration showed a notable decrease in growth, biomass, anthocyanins, chlorophylls, and antioxidant enzymes activities. A higher level of Cd (150 μM) also caused an upsurge in oxidative damage observed as higher electrolyte leakage (increased membrane permeability), H2O2 production, and MDA accumulation. Supplementation of Ca notably improved growth traits, photosynthetic pigments, cellular antioxidants (APX, POD, and ascorbic acid), anthocyanins, and levels of osmolytes. The significant improvement in the osmolytes (proteins and amino acids), and enzymatic antioxidative defense system enhanced the membrane stability and mitigated the damaging effects of Cd. The present results concluded that exogenously applied Ca potentially improve growth by regulating antioxidants and enabling maize plants to withstand the Cd toxicity.
  • Item
    Thumbnail Image
    Welfare Through Competence: A Framework for Animal-Centric Technology Design
    Webber, S ; Cobb, ML ; Coe, J (FRONTIERS MEDIA SA, 2022-06-30)
    Digital technologies offer new ways to ensure that animals can lead a good life in managed settings. As interactive enrichment and smart environments appear in zoos, farms, shelters, kennels and vet facilities, it is essential that the design of such technologies be guided by clear, scientifically-grounded understandings of what animals need and want, to be successful in improving their wellbeing. The field of Animal-Computer Interaction proposes that this can be achieved by centering animals as stakeholders in technology design, but there remains a need for robust methods to support interdisciplinary teams in placing animals' interests at the heart of design projects. Responding to this gap, we present the Welfare through Competence framework, which is grounded in contemporary animal welfare science, established technology design practices and applied expertise in animal-centered design. The framework brings together the "Five Domains of Animal Welfare" model and the "Coe Individual Competence" model, and provides a structured approach to defining animal-centric objectives and refining them through the course of a design project. In this paper, we demonstrate how design teams can use this framework to promote positive animal welfare in a range of managed settings. These much-needed methodological advances contribute a new theoretical foundation to debates around the possibility of animal-centered design, and offer a practical agenda for creating technologies that support a good life for animals.
  • Item
    Thumbnail Image
    A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria
    Beri, D ; Balan, B ; Chaubey, S ; Subramaniam, S ; Surendra, B ; Tatu, U (NATURE PORTFOLIO, 2017-01-16)
    Intra-erythrocytic growth of malaria parasite is known to induce redox stress. In addition to haem degradation which generates reactive oxygen species (ROS), the parasite is also thought to efflux redox active homocysteine. To understand the basis underlying accumulation of homocysteine, we have examined the transsulphuration (TS) pathway in the parasite, which is known to convert homocysteine to cysteine in higher eukaryotes. Our bioinformatic analysis revealed absence of key enzymes in the biosynthesis of cysteine namely cystathionine-β-synthase and cystathionine-γ-lyase in the parasite. Using mass spectrometry, we confirmed the absence of cystathionine, which is formed by enzymatic conversion of homocysteine thereby confirming truncation of TS pathway. We also quantitated levels of glutathione and homocysteine in infected erythrocytes and its spent medium. Our results showed increase in levels of these metabolites intracellularly and in culture supernatants. Our results provide a mechanistic basis for the long-known occurrence of hyperhomocysteinemia in malaria. Most importantly we find that homocysteine induces the transcription factor implicated in gametocytogenesis namely AP2-G and consequently triggers sexual stage conversion. We confirmed this observation both in vitro using Plasmodium falciparum cultures, and in vivo in the mouse model of malaria. Our study implicates homocysteine as a potential physiological trigger of gametocytogenesis.
  • Item
    Thumbnail Image
    Insights into physiological roles of unique metabolites released from Plasmodium-infected RBCs and their potential as clinical biomarkers for malaria
    Beri, D ; Ramdani, G ; Balan, B ; Gadara, D ; Poojary, M ; Momeux, L ; Tatu, U ; Langsley, G (NATURE PUBLISHING GROUP, 2019-02-27)
    Plasmodium sp. are obligate intracellular parasites that derive most of their nutrients from their host meaning the metabolic circuitry of both are intricately linked. We employed untargeted, global mass spectrometry to identify metabolites present in the culture supernatants of P. falciparum-infected red blood cells synchronized at ring, trophozoite and schizont developmental stages. This revealed a temporal regulation in release of a distinct set of metabolites compared with supernatants of non-infected red blood cells. Of the distinct metabolites we identified pipecolic acid to be abundantly present in parasite lysate, infected red blood cells and infected culture supernatant. Further, we performed targeted metabolomics to quantify pipecolic acid concentrations in both the supernatants of red blood cells infected with P. falciparum, as well as in the plasma and infected RBCs of P. berghei-infected mice. Measurable and significant hyperpipecolatemia suggest that pipecolic acid has the potential to be a diagnostic marker for malaria.
  • Item
    Thumbnail Image
    Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping.
    Koh, JCO ; Banerjee, BP ; Spangenberg, G ; Kant, S (Wiley, 2022-03)
    Hyperspectral vegetation indices (VIs) are widely deployed in agriculture remote sensing and plant phenotyping to estimate plant biophysical and biochemical traits. However, existing VIs consist mainly of simple two-band indices that limit the net performance and often do not generalise well for traits other than those for which they were originally designed. We present an automated hyperspectral vegetation index (AutoVI) system for the rapid generation of novel two- to six-band trait-specific indices in a streamlined process covering model selection, optimisation and evaluation, driven by the tree parzen estimator algorithm. Its performance was tested in generating novel indices to estimate chlorophyll and sugar contents in wheat. Results showed that AutoVI can rapidly generate complex novel VIs (at least a four-band index) that correlated strongly (R2  > 0.8) with measured chlorophyll and sugar contents in wheat. Automated hyperspectral vegetation index-derived indices were used as features in simple and stepwise multiple linear regressions for chlorophyll and sugar content estimation, and outperformed the results achieved with the existing 47 VIs and those provided using partial least squares regression. The AutoVI system can deliver novel trait-specific VIs readily adoptable to high-throughput plant phenotyping platforms and should appeal to plant scientists and breeders. A graphical user interface for the AutoVI is provided here.
  • Item
    Thumbnail Image
    Sniffing out what Australians know and believe about Drug Detector Dogs
    Oliva, JL ; Cobb, ML (ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD, 2022-08-26)
    The ways in which drugs are policed, differs from country to country, with Drug Detector Dogs (DDDs) a commonly used detection strategy in Australia. However, their effectiveness has been scrutinized by Australian media and research. Despite this, their work and lives "on the job" continue to be portrayed in a positive light on popular television shows such as Border Security. The aim of the current study was to ascertain public perceptions and knowledge surrounding DDDs using a sample of 129 Australians. Results revealed participants believed DDDs were equally as interesting and as happy as companion dogs. However, while there was general support for both dog roles in human lives, participants were relatively less supportive of the use of DDDs. Importantly, findings suggest general Australians have little awareness of the lives of DDDs "off the job," including housing and handling practices that directly impact animal welfare. We suggest that greater transparency around these aspects of the dogs' lives and welfare experience be made publicly available so that the DDD industry can maintain their social license to operate.
  • Item
    No Preview Available
    "I Had No Idea That Other People in the World Thought Differently to Me": Ethical Challenges in Small Animal Veterinary Practice and Implications for Ethics Support and Education
    Richards, L ; Coghlan, S ; Delany, C (University of Toronto Press, 2020-12-01)
    Although veterinarians encounter ethical challenges in their everyday practice, few studies have examined how they make sense of and respond to them. This research used semi-structured interviews and a qualitative methodology (phenomenological and constructivist/interpretivist approaches) to explore ethical challenges experienced by seven small animal city veterinarians and their ethical decision-making strategies. Thematic analysis of the interview transcripts identified four broad ethical issues: The first concerned disagreements about the best interests of the animal; the second centered on clinical uncertainty about the most appropriate treatment for the animal; the third involved factors influencing ethical reasoning and decision making; and the fourth concerned how ethics education might prepare veterinary students for future ethical decision making. An overarching theme identified in the analysis was one of enormous personal distress. Furthermore, a sense of veterinarians being interested in how others might think and feel about ethical challenges came through in the data. The results give insight into how veterinarians experience and respond to ethical challenges. The research also provides empirical information about everyday practice to inform future education in ethics and ethical decision making for veterinary students.
  • Item
    No Preview Available
    Pampered pets or poor bastards? The welfare of dogs kept as companion animals
    Meyer, I ; Forkman, B ; Fredholm, M ; Glanville, C ; Guldbrandtsen, B ; Izaguirre, ER ; Palmer, C ; Sandoe, P (ELSEVIER, 2022-06-01)