Veterinary Science Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Carbon sink strength of nodules but not other organs modulates photosynthesis of faba bean (Vicia faba) grown under elevated [CO2] and different water supply
    Parvin, S ; Uddin, S ; Tausz-Posch, S ; Armstrong, R ; Tausz, M (WILEY, 2020-07)
    Photosynthetic stimulation by elevated [CO2 ] (e[CO2 ]) may be limited by the capacity of sink organs to use photosynthates. In many legumes, N2 -fixing symbionts in root nodules provide an additional sink, so that legumes may be better able to profit from e[CO2 ]. However, drought not only constrains photosynthesis but also the size and activity of sinks, and little is known about the interaction of e[CO2 ] and drought on carbon sink strength of nodules and other organs. To compare carbon sink strength, faba bean was grown under ambient (400 ppm) or elevated (700 ppm) atmospheric [CO2 ] and subjected to well-watered or drought treatments, and then exposed to 13 C pulse-labelling using custom-built chambers to track the fate of new photosynthates. Drought decreased 13 C uptake and nodule sink strength, and this effect was even greater under e[CO2 ], and was associated with an accumulation of amino acids in nodules. This resulted in decreased N2 fixation, and increased accumulation of new photosynthates (13 C/sugars) in leaves, which in turn can feed back on photosynthesis. Our study suggests that nodule C sink activity is key to avoid sink limitation in legumes under e[CO2 ], and legumes may only be able to achieve greater C gain if nodule activity is maintained.
  • Item
    Thumbnail Image
    Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors
    Wallace, AJ ; Armstrong, RD ; Grace, PR ; Scheer, C ; Partington, DL (Springer Science and Business Media LLC, 2020-01-01)
    Abstract Improving fertiliser nitrogen (N) use efficiency is essential to increase productivity and avoid environmental damage. Using a 15N mass balance approach, we investigated the effects of five N fertiliser management strategies to test the hypothesis that increasing uptake of applied N by wheat improves productivity and reduces loss of N in a semi-arid environment. Three experiments were conducted between 2012 and 2014. Treatments included urea application (50 kg N/ha) at sowing with and without nitrification inhibitor (3,4-dimethylpyrazole phosphate, DMPP) and surface broadcast with and without urease inhibitor (n-butyl thiophosphoric triamide, NBPT) at the end of tillering plus an unfertilised control. It was found that deferring fertiliser application until the end of tillering decreased losses of fertiliser N (35–52%) through increasing uptake by the crop and or recovery in the soil at harvest, while maintaining yield except when rainfall following application was low. In this case, deferring application reduced fertiliser uptake (− 71%) and grain yield (− 18%) and increased recovery of N in the soil (+ 121%). Use of DMPP or NBPT reduced N loss where seasonal conditions were conducive to denitrification during winter (DMPP) and volatilisation or denitrification later in the season (NBPT). Their effect on grain yield was less significant; DMPP increased yield (+ 3–31%) in all years and NBPT increased yield (+ 7–11%) in 2 of 3 years compared to unamended urea. The majority of crop N uptake was supplied from soil reserves and as a result, crop recovery of applied N was not strongly related to grain yield response.