Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    No Preview Available
    Genome-Wide Interaction Analysis of Genetic Variants With Menopausal Hormone Therapy for Colorectal Cancer Risk
    Tian, Y ; Kim, AE ; Bien, SA ; Lin, Y ; Qu, C ; Harrison, TA ; Carreras-Torres, R ; Diez-Obrero, V ; Dimou, N ; Drew, DA ; Hidaka, A ; Huyghe, JR ; Jordahl, KM ; Morrison, J ; Murphy, N ; Obon-Santacana, M ; Ulrich, CM ; Ose, J ; Peoples, AR ; Ruiz-Narvaez, EA ; Shcherbina, A ; Stern, MC ; Su, Y-R ; van Duijnhoven, FJB ; Arndt, V ; Baurley, JW ; Berndt, S ; Bishop, DT ; Brenner, H ; Buchanan, DD ; Chan, AT ; Figueiredo, JC ; Gallinger, S ; Gruber, SB ; Harlid, S ; Hoffmeister, M ; Jenkins, MA ; Joshi, AD ; Keku, TO ; Larsson, SC ; Le Marchand, L ; Li, L ; Giles, GG ; Milne, RL ; Nan, H ; Nassir, R ; Ogino, S ; Budiarto, A ; Platz, EA ; Potter, JD ; Prentice, RL ; Rennert, G ; Sakoda, LC ; Schoen, RE ; Slattery, ML ; Thibodeau, SN ; Van Guelpen, B ; Visvanathan, K ; White, E ; Wolk, A ; Woods, MO ; Wu, AH ; Campbell, PT ; Casey, G ; Conti, D ; Gunter, MJ ; Kundaje, A ; Lewinger, JP ; Moreno, V ; Newcomb, PA ; Pardamean, B ; Thomas, DC ; Tsilidis, KK ; Peters, U ; Gauderman, WJ ; Hsu, L ; Chang-Claude, J (OXFORD UNIV PRESS INC, 2022-08-08)
    BACKGROUND: The use of menopausal hormone therapy (MHT) may interact with genetic variants to influence colorectal cancer (CRC) risk. METHODS: We conducted a genome-wide, gene-environment interaction between single nucleotide polymorphisms and the use of any MHT, estrogen only, and combined estrogen-progestogen therapy with CRC risk, among 28 486 postmenopausal women (11 519 CRC patients and 16 967 participants without CRC) from 38 studies, using logistic regression, 2-step method, and 2- or 3-degree-of-freedom joint test. A set-based score test was applied for rare genetic variants. RESULTS: The use of any MHT, estrogen only and estrogen-progestogen were associated with a reduced CRC risk (odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.64 to 0.78; OR = 0.65, 95% CI = 0.53 to 0.79; and OR = 0.73, 95% CI = 0.59 to 0.90, respectively). The 2-step method identified a statistically significant interaction between a GRIN2B variant rs117868593 and MHT use, whereby MHT-associated CRC risk was statistically significantly reduced in women with the GG genotype (OR = 0.68, 95% CI = 0.64 to 0.72) but not within strata of GC or CC genotypes. A statistically significant interaction between a DCBLD1 intronic variant at 6q22.1 (rs10782186) and MHT use was identified by the 2-degree-of-freedom joint test. The MHT-associated CRC risk was reduced with increasing number of rs10782186-C alleles, showing odds ratios of 0.78 (95% CI = 0.70 to 0.87) for TT, 0.68 (95% CI = 0.63 to 0.73) for TC, and 0.66 (95% CI = 0.60 to 0.74) for CC genotypes. In addition, 5 genes in rare variant analysis showed suggestive interactions with MHT (2-sided P < 1.2 × 10-4). CONCLUSION: Genetic variants that modify the association between MHT and CRC risk were identified, offering new insights into pathways of CRC carcinogenesis and potential mechanisms involved.
  • Item
    Thumbnail Image
    Genetic variants associated with circulating C-reactive protein levels and colorectal cancer survival: Sex-specific and lifestyle factors specific associations
    Huang, Y ; Hua, X ; Labadie, JD ; Harrison, TA ; Dai, JY ; Lindstrom, S ; Lin, Y ; Berndt, S ; Buchanan, DD ; Campbell, PT ; Casey, G ; Gallinger, SJ ; Gunter, MJ ; Hoffmeister, M ; Jenkins, MA ; Sakoda, LC ; Schoen, RE ; Diergaarde, B ; Slattery, ML ; White, E ; Giles, G ; Brenner, H ; Chang-Claude, J ; Joshi, A ; Ma, W ; Pai, RK ; Chan, AT ; Peters, U ; Newcomb, PA (WILEY, 2022-05-01)
    Elevated blood levels of C-reactive protein (CRP) have been linked to colorectal cancer (CRC) survival. We evaluated genetic variants associated with CRP levels and their interactions with sex and lifestyle factors in association with CRC-specific mortality. Our study included 16 142 CRC cases from the International Survival Analysis in Colorectal Cancer Consortium. We identified 618 common single nucleotide polymorphisms (SNPs) associated with CRP levels from the NHGRI-EBI GWAS Catalog. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between SNPs and CRC-specific mortality adjusting for age, sex, genotyping platform/study and principal components. We investigated their interactions with sex and lifestyle factors using likelihood ratio tests. Of 5472 (33.9%) deaths accrued over up to 10 years of follow-up, 3547 (64.8%) were due to CRC. No variants were associated with CRC-specific mortality after multiple comparison correction. We observed strong evidence of interaction between variant rs1933736 at FRK gene and sex in relation to CRC-specific mortality (corrected Pinteraction  = .0004); women had higher CRC-specific mortality associated with the minor allele (HR = 1.11, 95% CI = 1.04-1.19) whereas an inverse association was observed for men (HR = 0.88, 95% CI = 0.82-0.94). There was no evidence of interactions between CRP-associated SNPs and alcohol, obesity or smoking. Our study observed a significant interaction between sex and a CRP-associated variant in relation to CRC-specific mortality. Future replication of this association and functional annotation of the variant are needed.
  • Item
    Thumbnail Image
    Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk
    Haas, CB ; Su, Y-R ; Petersen, P ; Wang, X ; Bien, SA ; Lin, Y ; Albanes, D ; Weinstein, SJ ; Jenkins, MA ; Figueiredo, JC ; Newcomb, PA ; Casey, G ; Le Marchand, L ; Campbell, PT ; Moreno, V ; Potter, JD ; Sakoda, LC ; Slattery, ML ; Chan, AT ; Li, L ; Giles, GG ; Milne, RL ; Gruber, SB ; Rennert, G ; Woods, MO ; Gallinger, SJ ; Berndt, S ; Hayes, RB ; Huang, W-Y ; Wolk, A ; White, E ; Nan, H ; Nassir, R ; Lindor, NM ; Lewinger, JP ; Kim, AE ; Conti, D ; Gauderman, WJ ; Buchanan, DD ; Peters, U ; Hsu, L (NATURE PORTFOLIO, 2022-11-07)
    Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene-environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case-control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E-4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E-4), and Aspartylglucosaminidase (AGA: p = 4.5E-4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.
  • Item
    Thumbnail Image
    Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures
    Georgeson, P ; Harrison, TA ; Pope, BJ ; Zaidi, SH ; Qu, C ; Steinfelder, RS ; Lin, Y ; Joo, JE ; Mahmood, K ; Clendenning, M ; Walker, R ; Amitay, EL ; Berndt, S ; Brenner, H ; Campbell, PT ; Cao, Y ; Chan, AT ; Chang-Claude, J ; Doheny, KF ; Drew, DA ; Figueiredo, JC ; French, AJ ; Gallinger, S ; Giannakis, M ; Giles, GG ; Gsur, A ; Gunter, MJ ; Hoffmeister, M ; Hsu, L ; Huang, W-Y ; Limburg, P ; Manson, JE ; Moreno, V ; Nassir, R ; Nowak, JA ; Obon-Santacana, M ; Ogino, S ; Phipps, A ; Potter, JD ; Schoen, RE ; Sun, W ; Toland, AE ; Trinh, QM ; Ugai, T ; Macrae, FA ; Rosty, C ; Hudson, TJ ; Jenkins, MA ; Thibodeau, SN ; Winship, IM ; Peters, U ; Buchanan, DD (NATURE PORTFOLIO, 2022-06-06)
    Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 × 10-23 and p = 6 × 10-11, respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers.
  • Item
    No Preview Available
    Genetically Predicted Circulating C-Reactive Protein Concentration and Colorectal Cancer Survival: A Mendelian Randomization Consortium Study
    Hua, X ; Dai, JY ; Lindstrom, S ; Harrison, TA ; Lin, Y ; Alberts, SR ; Alwers, E ; Berndt, S ; Brenner, H ; Buchanan, DD ; Campbell, PT ; Casey, G ; Chang-Claude, J ; Gallinger, S ; Giles, GG ; Goldberg, RM ; Gunter, MJ ; Hoffmeister, M ; Jenkins, MA ; Joshi, AD ; Ma, W ; Milne, RL ; Murphy, N ; Pai, RK ; Sakoda, LC ; Schoen, RE ; Shi, Q ; Slattery, ML ; Song, M ; White, E ; Le Marchand, L ; Chan, AT ; Peters, U ; Newcomb, PA (AMER ASSOC CANCER RESEARCH, 2021-07)
    BACKGROUND: A positive association between circulating C-reactive protein (CRP) and colorectal cancer survival was reported in observational studies, which are susceptible to unmeasured confounding and reverse causality. We used a Mendelian randomization approach to evaluate the association between genetically predicted CRP concentrations and colorectal cancer-specific survival. METHODS: We used individual-level data for 16,918 eligible colorectal cancer cases of European ancestry from 15 studies within the International Survival Analysis of Colorectal Cancer Consortium. We calculated a genetic-risk score based on 52 CRP-associated genetic variants identified from genome-wide association studies. Because of the non-collapsibility of hazard ratios from Cox proportional hazards models, we used the additive hazards model to calculate hazard differences (HD) and 95% confidence intervals (CI) for the association between genetically predicted CRP concentrations and colorectal cancer-specific survival, overall and by stage at diagnosis and tumor location. Analyses were adjusted for age at diagnosis, sex, body mass index, genotyping platform, study, and principal components. RESULTS: Of the 5,395 (32%) deaths accrued over up to 10 years of follow-up, 3,808 (23%) were due to colorectal cancer. Genetically predicted CRP concentration was not associated with colorectal cancer-specific survival (HD, -1.15; 95% CI, -2.76 to 0.47 per 100,000 person-years; P = 0.16). Similarly, no associations were observed in subgroup analyses by stage at diagnosis or tumor location. CONCLUSIONS: Despite adequate power to detect moderate associations, our results did not support a causal effect of circulating CRP concentrations on colorectal cancer-specific survival. IMPACT: Future research evaluating genetically determined levels of other circulating inflammatory biomarkers (i.e., IL6) with colorectal cancer survival outcomes is needed.
  • Item
    Thumbnail Image
    Diabetes mellitus in relation to colorectal tumor molecular subtypes: A pooled analysis of more than 9000 cases
    Harlid, S ; Van Guelpen, B ; Qu, C ; Gylling, B ; Aglago, EK ; Amitay, EL ; Brenner, H ; Buchanan, DD ; Campbell, PT ; Cao, Y ; Chan, AT ; Chang-Claude, J ; Drew, DA ; Figueiredo, JC ; French, AJ ; Gallinger, S ; Giannakis, M ; Giles, GG ; Gunter, MJ ; Hoffmeister, M ; Hsu, L ; Jenkins, MA ; Lin, Y ; Moreno, V ; Murphy, N ; Newcomb, PA ; Newton, CC ; Nowak, JA ; Obon-Santacana, M ; Ogino, S ; Potter, JD ; Song, M ; Steinfelder, RS ; Sun, W ; Thibodeau, SN ; Toland, AE ; Ugai, T ; Um, CY ; Woods, MO ; Phipps, A ; Harrison, T ; Peters, U (WILEY, 2022-08-01)
    Diabetes is an established risk factor for colorectal cancer. However, colorectal cancer is a heterogeneous disease and it is not well understood whether diabetes is more strongly associated with some tumor molecular subtypes than others. A better understanding of the association between diabetes and colorectal cancer according to molecular subtypes could provide important insights into the biology of this association. We used data on lifestyle and clinical characteristics from the Colorectal Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), including 9756 colorectal cancer cases (with tumor marker data) and 9985 controls, to evaluate associations between reported diabetes and risk of colorectal cancer according to molecular subtypes. Tumor markers included BRAF and KRAS mutations, microsatellite instability and CpG island methylator phenotype. In the multinomial logistic regression model, comparing colorectal cancer cases to cancer-free controls, diabetes was positively associated with colorectal cancer regardless of subtype. The highest OR estimate was found for BRAF-mutated colorectal cancer, n = 1086 (ORfully adj : 1.67, 95% confidence intervals [CI]: 1.36-2.05), with an attenuated association observed between diabetes and colorectal cancer without BRAF-mutations, n = 7959 (ORfully adj : 1.33, 95% CI: 1.19-1.48). In the case only analysis, BRAF-mutation was differentially associated with diabetes (Pdifference  = .03). For the other markers, associations with diabetes were similar across tumor subtypes. In conclusion, our study confirms the established association between diabetes and colorectal cancer risk, and suggests that it particularly increases the risk of BRAF-mutated tumors.
  • Item
    Thumbnail Image
    Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival
    Labadie, JD ; Savas, S ; Harrison, TA ; Banbury, B ; Huang, Y ; Buchanan, DD ; Campbell, PT ; Gallinger, SJ ; Giles, GG ; Gunter, MJ ; Hoffmeister, M ; Hsu, L ; Jenkins, MA ; Lin, Y ; Ogino, S ; Phipps, A ; Slattery, ML ; Steinfelder, RS ; Sun, W ; Van Guelpen, B ; Hua, X ; Figuieredo, JC ; Pai, RK ; Nassir, R ; Qi, L ; Chan, AT ; Peters, U ; Newcomb, PA (NATURE PORTFOLIO, 2022-01-07)
    Identification of new genetic markers may improve the prediction of colorectal cancer prognosis. Our objective was to examine genome-wide associations of germline genetic variants with disease-specific survival in an analysis of 16,964 cases of colorectal cancer. We analyzed genotype and colorectal cancer-specific survival data from a consortium of 15 studies. Approximately 7.5 million SNPs were examined under the log-additive model using Cox proportional hazards models, adjusting for clinical factors and principal components. Additionally, we ran secondary analyses stratifying by tumor site and disease stage. We used a genome-wide p-value threshold of 5 × 10-8 to assess statistical significance. No variants were statistically significantly associated with disease-specific survival in the full case analysis or in the stage-stratified analyses. Three SNPs were statistically significantly associated with disease-specific survival for cases with tumors located in the distal colon (rs698022, HR = 1.48, CI 1.30-1.69, p = 8.47 × 10-9) and the proximal colon (rs189655236, HR = 2.14, 95% CI 1.65-2.77, p = 9.19 × 10-9 and rs144717887, HR = 2.01, 95% CI 1.57-2.58, p = 3.14 × 10-8), whereas no associations were detected for rectal tumors. Findings from this large genome-wide association study highlight the potential for anatomical-site-stratified genome-wide studies to identify germline genetic risk variants associated with colorectal cancer-specific survival. Larger sample sizes and further replication efforts are needed to more fully interpret these findings.
  • Item
    Thumbnail Image
    Association Between Smoking and Molecular Subtypes of Colorectal Cancer
    Wang, X ; Amitay, E ; Harrison, TA ; Banbury, BL ; Berndt, S ; Brenner, H ; Buchanan, DD ; Campbell, PT ; Cao, Y ; Chan, AT ; Chang-Claude, J ; Gallinger, SJ ; Giannakis, M ; Giles, GG ; Gunter, MJ ; Hopper, JL ; Jenkins, MA ; Lin, Y ; Moreno, V ; Nishihara, R ; Newcomb, PA ; Ogino, S ; Phipps, A ; Sakoda, LC ; Schoen, RE ; Slattery, ML ; Song, M ; Sun, W ; Thibodeau, SN ; Toland, AE ; Van Guelpen, B ; Woods, MO ; Hsu, L ; Hoffmeister, M ; Peters, U (OXFORD UNIV PRESS, 2021-08)
    BACKGROUND: Smoking is associated with colorectal cancer (CRC) risk. Previous studies suggested this association may be restricted to certain molecular subtypes of CRC, but large-scale comprehensive analysis is lacking. METHODS: A total of 9789 CRC cases and 11 231 controls of European ancestry from 11 observational studies were included. We harmonized smoking variables across studies and derived sex study-specific quartiles of pack-years of smoking for analysis. Four somatic colorectal tumor markers were assessed individually and in combination, including BRAF mutation, KRAS mutation, CpG island methylator phenotype (CIMP), and microsatellite instability (MSI) status. A multinomial logistic regression analysis was used to assess the association between smoking and risk of CRC subtypes by molecular characteristics, adjusting for age, sex, and study. All statistical tests were 2-sided and adjusted for Bonferroni correction. RESULTS: Heavier smoking was associated with higher risk of CRC overall and stratified by individual markers (P trend < .001). The associations differed statistically significantly between all molecular subtypes, which was the most statistically significant for CIMP and BRAF. Compared with never-smokers, smokers in the fourth quartile of pack-years had a 90% higher risk of CIMP-positive CRC (odds ratio = 1.90, 95% confidence interval = 1.60 to 2.26) but only 35% higher risk for CIMP-negative CRC (odds ratio = 1.35, 95% confidence interval = 1.22 to 1.49; P difference = 2.1 x 10-6). The association was also stronger in tumors that were CIMP positive, MSI high, or KRAS wild type when combined (P difference < .001). CONCLUSION: Smoking was associated with differential risk of CRC subtypes defined by molecular characteristics. Heavier smokers had particularly higher risk of CRC subtypes that were CIMP positive and MSI high in combination, suggesting that smoking may be involved in the development of colorectal tumors via the serrated pathway.
  • Item
    Thumbnail Image
    DNA Methylation Signatures and the Contribution of Age-Associated Methylomic Drift to Carcinogenesis in Early-Onset Colorectal Cancer
    Joo, JE ; Clendenning, M ; Wong, EM ; Rosty, C ; Mahmood, K ; Georgeson, P ; Winship, IM ; Preston, SG ; Win, AK ; Dugue, P-A ; Jayasekara, H ; English, D ; Macrae, FA ; Hopper, JL ; Jenkins, MA ; Milne, RL ; Giles, GG ; Southey, MC ; Buchanan, DD (MDPI, 2021-06)
    We investigated aberrant DNA methylation (DNAm) changes and the contribution of ageing-associated methylomic drift and age acceleration to early-onset colorectal cancer (EOCRC) carcinogenesis. Genome-wide DNAm profiling using the Infinium HM450K on 97 EOCRC tumour and 54 normal colonic mucosa samples was compared with: (1) intermediate-onset CRC (IOCRC; diagnosed between 50-70 years; 343 tumour and 35 normal); and (2) late-onset CRC (LOCRC; >70 years; 318 tumour and 40 normal). CpGs associated with age-related methylation drift were identified using a public dataset of 231 normal mucosa samples from people without CRC. DNAm-age was estimated using epiTOC2. Common to all three age-of-onset groups, 88,385 (20% of all CpGs) CpGs were differentially methylated between tumour and normal mucosa. We identified 234 differentially methylated genes that were unique to the EOCRC group; 13 of these DMRs/genes were replicated in EOCRC compared with LOCRCs from TCGA. In normal mucosa from people without CRC, we identified 28,154 CpGs that undergo ageing-related DNAm drift, and of those, 65% were aberrantly methylated in EOCRC tumours. Based on the mitotic-based DNAm clock epiTOC2, we identified age acceleration in normal mucosa of people with EOCRC compared with normal mucosa from the IOCRC, LOCRC groups (p = 3.7 × 10-16) and young people without CRC (p = 5.8 × 10-6). EOCRC acquires unique DNAm alterations at 234 loci. CpGs associated with ageing-associated drift were widely affected in EOCRC without needing the decades-long accrual of DNAm drift as commonly seen in intermediate- and late-onset CRCs. Accelerated ageing in normal mucosa from people with EOCRC potentially underlies the earlier age of diagnosis in CRC carcinogenesis.
  • Item
    Thumbnail Image
    Genetic architectures of proximal and distal colorectal cancer are partly distinct
    Huyghe, JR ; Harrison, TA ; Bien, SA ; Hampel, H ; Figueiredo, JC ; Schmit, SL ; Conti, D ; Chen, S ; Qu, C ; Lin, Y ; Barfield, R ; Baron, JA ; Cross, AJ ; Diergaarde, B ; Duggan, D ; Harlid, S ; Imaz, L ; Kang, HM ; Levine, DM ; Perduca, V ; Perez-Cornago, A ; Sakoda, LC ; Schumacher, FR ; Slattery, ML ; Toland, AE ; van Duijnhoven, FJB ; Van Guelpen, B ; Agudo, A ; Albanes, D ; Alonso, MH ; Anderson, K ; Arnau-Collell, C ; Arndt, V ; Banbury, BL ; Bassik, MC ; Berndt, S ; Bezieau, S ; Bishop, DT ; Boehm, J ; Boeing, H ; Boutron-Ruault, M-C ; Brenner, H ; Brezina, S ; Buch, S ; Buchanan, DD ; Burnett-Hartman, A ; Caan, BJ ; Campbell, PT ; Carr, PR ; Castells, A ; Castellvi-Bel, S ; Chan, AT ; Chang-Claude, J ; Chanock, SJ ; Curtis, KR ; de la Chapelle, A ; Easton, DF ; English, DR ; Feskens, EJM ; Gala, M ; Gallinger, SJ ; Gauderman, WJ ; Giles, GG ; Goodman, PJ ; Grady, WM ; Grove, JS ; Gsur, A ; Gunter, MJ ; Haile, RW ; Hampe, J ; Hoffmeister, M ; Hopper, JL ; Hsu, W-L ; Huang, W-Y ; Hudson, TJ ; Jenab, M ; Jenkins, MA ; Joshi, AD ; Keku, TO ; Kooperberg, C ; Kuhn, T ; Kury, S ; Le Marchand, L ; Lejbkowicz, F ; Li, C ; Li, L ; Lieb, W ; Lindblom, A ; Lindor, NM ; Mannisto, S ; Markowitz, SD ; Milne, RL ; Moreno, L ; Murphy, N ; Nassir, R ; Offit, K ; Ogino, S ; Panico, S ; Parfrey, PS ; Pearlman, R ; Pharoah, PDP ; Phipps, A ; Platz, EA ; Potter, JD ; Prentice, RL ; Qi, L ; Raskin, L ; Rennert, G ; Rennert, HS ; Riboli, E ; Schafmayer, C ; Schoen, RE ; Seminara, D ; Song, M ; Su, Y-R ; Tangen, CM ; Thibodeau, SN ; Thomas, DC ; Trichopoulou, A ; Ulrich, CM ; Visvanathan, K ; Vodicka, P ; Vodickova, L ; Vymetalkova, V ; Weigl, K ; Weinstein, SJ ; White, E ; Wolk, A ; Woods, MO ; Wu, AH ; Abecasis, GR ; Nickerson, DA ; Scacheri, PC ; Kundaje, A ; Casey, G ; Gruber, SB ; Hsu, L ; Moreno, V ; Hayes, RB ; Newcomb, PA ; Peters, U (BMJ PUBLISHING GROUP, 2021-07)
    OBJECTIVE: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined. DESIGN: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling. RESULTS: We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer. CONCLUSION: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.