Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 95
  • Item
    Thumbnail Image
    Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk
    Tian, Y ; Lin, Y ; Qu, C ; Arndt, V ; Baurley, JW ; Berndt, SI ; Bien, SA ; Bishop, DT ; Brenner, H ; Buchanan, DD ; Budiarto, A ; Campbell, PT ; Carreras-Torres, R ; Casey, G ; Chan, AT ; Chen, R ; Chen, X ; Conti, DV ; Diez-Obrero, V ; Dimou, N ; Drew, DA ; Figueiredo, JC ; Gallinger, S ; Giles, GG ; Gruber, SB ; Gunter, MJ ; Harlid, S ; Harrison, TA ; Hidaka, A ; Hoffmeister, M ; Huyghe, JR ; Jenkins, MA ; Jordahl, KM ; Joshi, AD ; Keku, TO ; Kawaguchi, E ; Kim, AE ; Kundaje, A ; Larsson, SC ; Marchand, LL ; Lewinger, JP ; Li, L ; Moreno, V ; Morrison, J ; Murphy, N ; Nan, H ; Nassir, R ; Newcomb, PA ; Obon-Santacana, M ; Ogino, S ; Ose, J ; Pardamean, B ; Pellatt, AJ ; Peoples, AR ; Platz, EA ; Potter, JD ; Prentice, RL ; Rennert, G ; Ruiz-Narvaez, EA ; Sakoda, LC ; Schoen, RE ; Shcherbina, A ; Stern, MC ; Su, Y-R ; Thibodeau, SN ; Thomas, DC ; Tsilidis, KK ; van Duijnhoven, FJB ; Van Guelpen, B ; Visvanathan, K ; White, E ; Wolk, A ; Woods, MO ; Wu, AH ; Peters, U ; Gauderman, WJ ; Hsu, L ; Chang-Claude, J (SPRINGERNATURE, 2024-06-01)
    BACKGROUND: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
  • Item
    Thumbnail Image
    Breast and bowel cancers diagnosed in people 'too young to have cancer': A blueprint for research using family and twin studies
    Hopper, JL ; Li, S ; MacInnis, RJ ; Dowty, JG ; Nguyen, TL ; Bui, M ; Dite, GS ; Esser, VFC ; Ye, Z ; Makalic, E ; Schmidt, DF ; Goudey, B ; Alpen, K ; Kapuscinski, M ; Win, AK ; Dugue, P-A ; Milne, RL ; Jayasekara, H ; Brooks, JD ; Malta, S ; Calais-Ferreira, L ; Campbell, AC ; Young, JT ; Nguyen-Dumont, T ; Sung, J ; Giles, GG ; Buchanan, D ; Winship, I ; Terry, MB ; Southey, MC ; Jenkins, MA (WILEY, 2024-03-19)
    Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.
  • Item
    Thumbnail Image
    Genetically proxied glucose-lowering drug target perturbation and risk of cancer: a Mendelian randomisation analysis.
    Yarmolinsky, J ; Bouras, E ; Constantinescu, A ; Burrows, K ; Bull, CJ ; Vincent, EE ; Martin, RM ; Dimopoulou, O ; Lewis, SJ ; Moreno, V ; Vujkovic, M ; Chang, K-M ; Voight, BF ; Tsao, PS ; Gunter, MJ ; Hampe, J ; Pellatt, AJ ; Pharoah, PDP ; Schoen, RE ; Gallinger, S ; Jenkins, MA ; Pai, RK ; PRACTICAL consortium, ; VA Million Veteran Program, ; Gill, D ; Tsilidis, KK (Springer Science and Business Media LLC, 2023-08)
    AIMS/HYPOTHESIS: Epidemiological studies have generated conflicting findings on the relationship between glucose-lowering medication use and cancer risk. Naturally occurring variation in genes encoding glucose-lowering drug targets can be used to investigate the effect of their pharmacological perturbation on cancer risk. METHODS: We developed genetic instruments for three glucose-lowering drug targets (peroxisome proliferator activated receptor γ [PPARG]; sulfonylurea receptor 1 [ATP binding cassette subfamily C member 8 (ABCC8)]; glucagon-like peptide 1 receptor [GLP1R]) using summary genetic association data from a genome-wide association study of type 2 diabetes in 148,726 cases and 965,732 controls in the Million Veteran Program. Genetic instruments were constructed using cis-acting genome-wide significant (p<5×10-8) SNPs permitted to be in weak linkage disequilibrium (r2<0.20). Summary genetic association estimates for these SNPs were obtained from genome-wide association study (GWAS) consortia for the following cancers: breast (122,977 cases, 105,974 controls); colorectal (58,221 cases, 67,694 controls); prostate (79,148 cases, 61,106 controls); and overall (i.e. site-combined) cancer (27,483 cases, 372,016 controls). Inverse-variance weighted random-effects models adjusting for linkage disequilibrium were employed to estimate causal associations between genetically proxied drug target perturbation and cancer risk. Co-localisation analysis was employed to examine robustness of findings to violations of Mendelian randomisation (MR) assumptions. A Bonferroni correction was employed as a heuristic to define associations from MR analyses as 'strong' and 'weak' evidence. RESULTS: In MR analysis, genetically proxied PPARG perturbation was weakly associated with higher risk of prostate cancer (for PPARG perturbation equivalent to a 1 unit decrease in inverse rank normal transformed HbA1c: OR 1.75 [95% CI 1.07, 2.85], p=0.02). In histological subtype-stratified analyses, genetically proxied PPARG perturbation was weakly associated with lower risk of oestrogen receptor-positive breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10-3). In co-localisation analysis, however, there was little evidence of shared causal variants for type 2 diabetes liability and cancer endpoints in the PPARG locus, although these analyses were likely underpowered. There was little evidence to support associations between genetically proxied PPARG perturbation and colorectal or overall cancer risk or between genetically proxied ABCC8 or GLP1R perturbation with risk across cancer endpoints. CONCLUSIONS/INTERPRETATION: Our drug target MR analyses did not find consistent evidence to support an association of genetically proxied PPARG, ABCC8 or GLP1R perturbation with breast, colorectal, prostate or overall cancer risk. Further evaluation of these drug targets using alternative molecular epidemiological approaches may help to further corroborate the findings presented in this analysis. DATA AVAILABILITY: Summary genetic association data for select cancer endpoints were obtained from the public domain: breast cancer ( https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ ); and overall prostate cancer ( http://practical.icr.ac.uk/blog/ ). Summary genetic association data for colorectal cancer can be accessed by contacting GECCO (kafdem at fredhutch.org). Summary genetic association data on advanced prostate cancer can be accessed by contacting PRACTICAL (practical at icr.ac.uk). Summary genetic association data on type 2 diabetes from Vujkovic et al (Nat Genet, 2020) can be accessed through dbGAP under accession number phs001672.v3.p1 (pha004945.1 refers to the European-specific summary statistics). UK Biobank data can be accessed by registering with UK Biobank and completing the registration form in the Access Management System (AMS) ( https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access ).
  • Item
    No Preview Available
    Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries
    Fernandez-Rozadilla, C ; Timofeeva, M ; Chen, Z ; Law, P ; Thomas, M ; Bien, S ; Diez-Obrero, V ; Li, L ; Fernandez-Tajes, J ; Palles, C ; Sherwood, K ; Harris, S ; Svinti, V ; McDonnell, K ; Farrington, S ; Studd, J ; Vaughan-Shaw, P ; Shu, X-O ; Long, J ; Cai, Q ; Guo, X ; Lu, Y ; Scacheri, P ; Studd, J ; Huyghe, J ; Harrison, T ; Shibata, D ; Haiman, C ; Devall, M ; Schumacher, F ; Melas, M ; Rennert, G ; Obon-Santacana, M ; Martin-Sanchez, V ; Moratalla-Navarro, F ; Oh, JH ; Kim, J ; Jee, SH ; Jung, KJ ; Kweon, S-S ; Shin, M-H ; Shin, A ; Ahn, Y-O ; Kim, D-H ; Oze, I ; Wen, W ; Matsuo, K ; Matsuda, K ; Tanikawa, C ; Ren, Z ; Gao, Y-T ; Jia, W-H ; Potter, J ; Jenkins, M ; Win, AK ; Pai, R ; Figueiredo, J ; Haile, R ; Gallinger, S ; Woods, M ; Newcomb, P ; Shibata, D ; Cheadle, J ; Kaplan, R ; Maughan, T ; Kerr, R ; Kerr, D ; Kirac, I ; Boehm, J ; Mecklin, L-P ; Jousilahti, P ; Knekt, P ; Aaltonen, L ; Rissanen, H ; Pukkala, E ; Eriksson, J ; Cajuso, T ; Hanninen, U ; Kondelin, J ; Palin, K ; Tanskanen, T ; Renkonen-Sinisalo, L ; Zanke, B ; Mannisto, S ; Albanes, D ; Weinstein, S ; Ruiz-Narvaez, E ; Palmer, J ; Buchanan, D ; Platz, E ; Visvanathan, K ; Ulrich, C ; Siegel, E ; Brezina, S ; Gsur, A ; Campbell, P ; Chang-Claude, J ; Hoffmeister, M ; Brenner, H ; Slattery, M ; Potter, J ; Tsilidis, K ; Schulze, M ; Gunter, M ; Murphy, N ; Castells, A ; Castellvi-Bel, S ; Moreira, L ; Arndt, V ; Shcherbina, A ; Stern, M ; Pardamean, B ; Bishop, T ; Giles, G ; Southey, M ; Idos, G ; McDonnell, K ; Abu-Ful, Z ; Greenson, J ; Shulman, K ; Lejbkowicz, F ; Offit, K ; Su, Y-R ; Steinfelder, R ; Keku, T ; van Guelpen, B ; Hudson, T ; Hampel, H ; Pearlman, R ; Berndt, S ; Hayes, R ; Martinez, ME ; Thomas, S ; Corley, D ; Pharoah, P ; Larsson, S ; Yen, Y ; Lenz, H-J ; White, E ; Li, L ; Doheny, K ; Pugh, E ; Shelford, T ; Chan, A ; Cruz-Correa, M ; Lindblom, A ; Shibata, D ; Joshi, A ; Schafmayer, C ; Scacheri, P ; Kundaje, A ; Nickerson, D ; Schoen, R ; Hampe, J ; Stadler, Z ; Vodicka, P ; Vodickova, L ; Vymetalkova, V ; Papadopoulos, N ; Edlund, C ; Gauderman, W ; Thomas, D ; Shibata, D ; Toland, A ; Markowitz, S ; Kim, A ; Gruber, S ; van Duijnhoven, F ; Feskens, E ; Sakoda, L ; Gago-Dominguez, M ; Wolk, A ; Naccarati, A ; Pardini, B ; FitzGerald, L ; Lee, SC ; Ogino, S ; Bien, S ; Kooperberg, C ; Li, C ; Lin, Y ; Prentice, R ; Qu, C ; Bezieau, S ; Tangen, C ; Mardis, E ; Yamaji, T ; Sawada, N ; Iwasaki, M ; Haiman, C ; Le Marchand, L ; Wu, A ; Qu, C ; McNeil, C ; Coetzee, G ; Hayward, C ; Deary, I ; Harris, S ; Theodoratou, E ; Reid, S ; Walker, M ; Ooi, LY ; Moreno, V ; Casey, G ; Gruber, S ; Tomlinson, I ; Zheng, W ; Dunlop, M ; Houlston, R ; Peters, U (NATURE PORTFOLIO, 2023-01)
    Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
  • Item
    No Preview Available
    Causal relationships between breast cancer risk factors based on mammographic features
    Ye, Z ; Nguyen, TL ; Dite, GS ; Macinnis, RJ ; Schmidt, DF ; Makalic, E ; Al-Qershi, OM ; Bui, M ; Esser, VFC ; Dowty, JG ; Trinh, HN ; Evans, CF ; Tan, M ; Sung, J ; Jenkins, MA ; Giles, GG ; Southey, MC ; Hopper, JL ; Li, S (BMC, 2023-10-25)
    BACKGROUND: Mammogram risk scores based on texture and density defined by different brightness thresholds are associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed to investigate causal relationships between these intercorrelated mammogram risk scores to determine their relevance to breast cancer aetiology. METHODS: We used digitised mammograms for 371 monozygotic twin pairs, aged 40-70 years without a prior diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sisters Study. We generated normalised, age-adjusted, and standardised risk scores based on textures using the Cirrus algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON) method. RESULTS: The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22-0.81; all P < 0.005). We estimated that 28-92% of the associations between the risk scores could be attributed to causal relationships between the scores, with the rest attributed to familial confounders shared by the scores. There was consistent evidence for positive causal effects: of Cirrus, light areas, and bright areas on the brightest areas (accounting for 34%, 55%, and 85% of the associations, respectively); and of light areas and bright areas on Cirrus (accounting for 37% and 28%, respectively). CONCLUSIONS: In a mammogram, the lighter (less dense) areas have a causal effect on the brightest (highly dense) areas, including through a causal pathway via textural features. These causal relationships help us gain insight into the relative aetiological importance of different mammographic features in breast cancer. For example our findings are consistent with the brightest areas being more aetiologically important than lighter areas for screen-detected breast cancer; conversely, light areas being more aetiologically important for interval breast cancer. Additionally, specific textural features capture aetiologically independent breast cancer risk information from dense areas. These findings highlight the utility of ICE FALCON and family data in decomposing the associations between intercorrelated disease biomarkers into distinct biological pathways.
  • Item
    No Preview Available
    A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk
    Aglago, EK ; Kim, A ; Lin, Y ; Qu, C ; Evangelou, M ; Ren, Y ; Morrison, J ; Albanes, D ; Arndt, V ; Barry, EL ; Baurley, JW ; Berndt, S ; Bien, SA ; Bishop, DT ; Bouras, E ; Brenner, H ; Buchanan, DD ; Budiarto, A ; Carreras-Torres, R ; Casey, G ; Cenggoro, TW ; Chen, AT ; Chang-Claude, J ; Chen, X ; Conti, D ; Devall, M ; Diez-Obrero, V ; Dimou, N ; Drew, D ; Figueiredo, JC ; Gallinger, S ; Giles, GG ; Gruber, SB ; Gsur, A ; Gunter, MJ ; Hampel, H ; Harlid, S ; Hidaka, A ; Harrison, TA ; Hoffmeister, M ; Huyghe, JR ; Jenkins, MA ; Jordahl, K ; Joshi, AD ; Kawaguchi, ES ; Keku, TO ; Kundaje, A ; Larsson, SC ; Le Marchand, L ; Lewinger, JP ; Li, L ; Lynch, BM ; Mahesworo, B ; Mandic, M ; Obon-Santacana, M ; Morento, V ; Murphy, N ; Men, H ; Nassir, R ; Newcomb, PA ; Ogino, S ; Ose, J ; Pai, RK ; Palmer, JR ; Papadimitriou, N ; Pardamean, B ; Peoples, AR ; Platz, EA ; Potter, JD ; Prentice, RL ; Rennert, G ; Ruiz-Narvaez, E ; Sakoda, LC ; Scacheri, PC ; Schmit, SL ; Schoen, RE ; Shcherbina, A ; Slattery, ML ; Stern, MC ; Su, Y-R ; Tangen, CM ; Thibodeau, SN ; Thomas, DC ; Tian, Y ; Ulrich, CM ; van Duijnhoven, FJB ; Van Guelpen, B ; Visvanathan, K ; Vodicka, P ; Wang, J ; White, E ; Wolk, A ; Woods, MO ; Wu, AH ; Zemlianskaia, N ; Hsu, L ; Gauderman, WJ ; Peters, U ; Tsilidis, KK ; Campbell, PT (AMER ASSOC CANCER RESEARCH, 2023-08-01)
    UNLABELLED: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. SIGNIFICANCE: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
  • Item
    No Preview Available
    Elucidating the Risk of Colorectal Cancer for Variants in Hereditary Colorectal Cancer Genes
    Mahmood, K ; Thomas, M ; Qu, C ; Hsu, L ; Buchanan, DD ; Peters, U (W B SAUNDERS CO-ELSEVIER INC, 2023-10)
  • Item
    No Preview Available
    Probing the diabetes and colorectal cancer relationship using gene - environment interaction analyses
    Dimou, N ; Kim, AE ; Flanagan, O ; Murphy, N ; Diez-Obrero, V ; Shcherbina, A ; Aglago, EK ; Bouras, E ; Campbell, PT ; Casey, G ; Gallinger, S ; Gruber, SB ; Jenkins, MA ; Lin, Y ; Moreno, V ; Ruiz-Narvaez, E ; Stern, MC ; Tian, Y ; Tsilidis, KK ; Arndt, V ; Barry, EL ; Baurley, JW ; Berndt, SI ; Bezieau, S ; Bien, SA ; Bishop, DT ; Brenner, H ; Budiarto, A ; Carreras-Torres, R ; Cenggoro, TW ; Chan, AT ; Chang-Claude, J ; Chanock, SJ ; Chen, X ; Conti, DV ; Dampier, CH ; Devall, M ; Drew, DA ; Figueiredo, JC ; Giles, GG ; Gsur, A ; Harrison, TA ; Hidaka, A ; Hoffmeister, M ; Huyghe, JR ; Jordahl, K ; Kawaguchi, E ; Keku, TO ; Larsson, SC ; Le Marchand, L ; Lewinger, JP ; Li, L ; Mahesworo, B ; Morrison, J ; Newcomb, PA ; Newton, CC ; Obon-Santacana, M ; Ose, J ; Pai, RK ; Palmer, JR ; Papadimitriou, N ; Pardamean, B ; Peoples, AR ; Pharoah, PDP ; Platz, EA ; Potter, JD ; Rennert, G ; Scacheri, PC ; Schoen, RE ; Su, Y-R ; Tangen, CM ; Thibodeau, SN ; Thomas, DC ; Ulrich, CM ; Um, CY ; van Duijnhoven, FJB ; Visvanathan, K ; Vodicka, P ; Vodickova, L ; White, E ; Wolk, A ; Woods, MO ; Qu, C ; Kundaje, A ; Hsu, L ; Gauderman, WJ ; Gunter, MJ ; Peters, U (SPRINGERNATURE, 2023-08-24)
    BACKGROUND: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
  • Item
    No Preview Available
    Validation of a Genetic-Enhanced Risk Prediction Model for Colorectal Cancer in a Large Community-Based Cohort.
    Su, Y-R ; Sakoda, LC ; Jeon, J ; Thomas, M ; Lin, Y ; Schneider, JL ; Udaltsova, N ; Lee, JK ; Lansdorp-Vogelaar, I ; Peterse, EFP ; Zauber, AG ; Zheng, J ; Zheng, Y ; Hauser, E ; Baron, JA ; Barry, EL ; Bishop, DT ; Brenner, H ; Buchanan, DD ; Burnett-Hartman, A ; Campbell, PT ; Casey, G ; Castellví-Bel, S ; Chan, AT ; Chang-Claude, J ; Figueiredo, JC ; Gallinger, SJ ; Giles, GG ; Gruber, SB ; Gsur, A ; Gunter, MJ ; Hampe, J ; Hampel, H ; Harrison, TA ; Hoffmeister, M ; Hua, X ; Huyghe, JR ; Jenkins, MA ; Keku, TO ; Marchand, LL ; Li, L ; Lindblom, A ; Moreno, V ; Newcomb, PA ; Pharoah, PDP ; Platz, EA ; Potter, JD ; Qu, C ; Rennert, G ; Schoen, RE ; Slattery, ML ; Song, M ; van Duijnhoven, FJB ; Van Guelpen, B ; Vodicka, P ; Wolk, A ; Woods, MO ; Wu, AH ; Hayes, RB ; Peters, U ; Corley, DA ; Hsu, L (American Association for Cancer Research (AACR), 2023-03-06)
    BACKGROUND: Polygenic risk scores (PRS) which summarize individuals' genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance. METHODS: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group). RESULTS: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91-1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71-0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P < 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P < 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity. CONCLUSIONS: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort. IMPACT: The proposed model has potential utility in risk-stratified colorectal cancer prevention.
  • Item
    No Preview Available
    Variance of age-specific log incidence decomposition (VALID): a unifying model of measured and unmeasured genetic and non-genetic risks
    Hopper, JL ; Dowty, JG ; Nguyen, TL ; Li, S ; Dite, GS ; MacInnis, RJ ; Makalic, E ; Schmidt, DF ; Bui, M ; Stone, J ; Sung, J ; Jenkins, MA ; Giles, GG ; Southey, MC ; Mathews, JD (OXFORD UNIV PRESS, 2023-10-05)
    BACKGROUND: The extent to which known and unknown factors explain how much people of the same age differ in disease risk is fundamental to epidemiology. Risk factors can be correlated in relatives, so familial aspects of risk (genetic and non-genetic) must be considered. DEVELOPMENT: We present a unifying model (VALID) for variance in risk, with risk defined as log(incidence) or logit(cumulative incidence). Consider a normally distributed risk score with incidence increasing exponentially as the risk increases. VALID's building block is variance in risk, Δ2, where Δ = log(OPERA) is the difference in mean between cases and controls and OPERA is the odds ratio per standard deviation. A risk score correlated r between a pair of relatives generates a familial odds ratio of exp(rΔ2). Familial risk ratios, therefore, can be converted into variance components of risk, extending Fisher's classic decomposition of familial variation to binary traits. Under VALID, there is a natural upper limit to variance in risk caused by genetic factors, determined by the familial odds ratio for genetically identical twin pairs, but not to variation caused by non-genetic factors. APPLICATION: For female breast cancer, VALID quantified how much variance in risk is explained-at different ages-by known and unknown major genes and polygenes, non-genomic risk factors correlated in relatives, and known individual-specific factors. CONCLUSION: VALID has shown that, while substantial genetic risk factors have been discovered, much is unknown about genetic and familial aspects of breast cancer risk especially for young women, and little is known about individual-specific variance in risk.