Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Weight is More Informative than Body Mass Index for Predicting Postmenopausal Breast Cancer Risk: Prospective Family Study Cohort (ProF-SC)
    Ye, Z ; Li, S ; Dite, GS ; Nguyen, TL ; MacInnis, RJ ; Andrulis, IL ; Buys, SS ; Daly, MB ; John, EM ; Kurian, AW ; Genkinger, JM ; Chung, WK ; Phillips, K-A ; Thorne, H ; Winship, IM ; Milne, RL ; Dugue, P-A ; Southey, MC ; Giles, GG ; Terry, MB ; Hopper, JL (AMER ASSOC CANCER RESEARCH, 2022-03)
    UNLABELLED: We considered whether weight is more informative than body mass index (BMI) = weight/height2 when predicting breast cancer risk for postmenopausal women, and if the weight association differs by underlying familial risk. We studied 6,761 women postmenopausal at baseline with a wide range of familial risk from 2,364 families in the Prospective Family Study Cohort. Participants were followed for on average 11.45 years and there were 416 incident breast cancers. We used Cox regression to estimate risk associations with log-transformed weight and BMI after adjusting for underlying familial risk. We compared model fits using the Akaike information criterion (AIC) and nested models using the likelihood ratio test. The AIC for the weight-only model was 6.22 units lower than for the BMI-only model, and the log risk gradient was 23% greater. Adding BMI or height to weight did not improve fit (ΔAIC = 0.90 and 0.83, respectively; both P = 0.3). Conversely, adding weight to BMI or height gave better fits (ΔAIC = 5.32 and 11.64; P = 0.007 and 0.0002, respectively). Adding height improved only the BMI model (ΔAIC = 5.47; P = 0.006). There was no evidence that the BMI or weight associations differed by underlying familial risk (P > 0.2). Weight is more informative than BMI for predicting breast cancer risk, consistent with nonadipose as well as adipose tissue being etiologically relevant. The independent but multiplicative associations of weight and familial risk suggest that, in terms of absolute breast cancer risk, the association with weight is more important the greater a woman's underlying familial risk. PREVENTION RELEVANCE: Our results suggest that the relationship between BMI and breast cancer could be due to a relationship between weight and breast cancer, downgraded by inappropriately adjusting for height; potential importance of anthropometric measures other than total body fat; breast cancer risk associations with BMI and weight are across a continuum.
  • Item
    Thumbnail Image
    Segregation analysis of 17,425 population-based breast cancer families: Evidence for genetic susceptibility and risk prediction
    Li, S ; MacInnis, RJ ; Lee, A ; Nguyen-Dumont, T ; Dorling, L ; Carvalho, S ; Dite, GS ; Shah, M ; Luccarini, C ; Wang, Q ; Milne, RL ; Jenkins, MA ; Giles, GG ; Dunning, AM ; Pharoah, PDP ; Southey, MC ; Easton, DF ; Hopper, JL ; Antoniou, AC (CELL PRESS, 2022-10-06)
    Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
  • Item
    Thumbnail Image
    Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk
    Li, S ; Nguyen, TL ; Tu, N-D ; Dowty, JG ; Dite, GS ; Ye, Z ; Trinh, HN ; Evans, CF ; Tan, M ; Sung, J ; Jenkins, MA ; Giles, GG ; Hopper, JL ; Southey, MC (MDPI, 2022-06)
    Cumulus, Altocumulus, and Cirrocumulus are measures of mammographic density defined at increasing pixel brightness thresholds, which, when converted to mammogram risk scores (MRSs), predict breast cancer risk. Twin and family studies suggest substantial variance in the MRSs could be explained by genetic factors. For 2559 women aged 30 to 80 years (mean 54 years), we measured the MRSs from digitized film mammograms and estimated the associations of the MRSs with a 313-SNP breast cancer polygenic risk score (PRS) and 202 individual SNPs associated with breast cancer risk. The PRS was weakly positively correlated (correlation coefficients ranged 0.05−0.08; all p < 0.04) with all the MRSs except the Cumulus-white MRS based on the “white but not bright area” (correlation coefficient = 0.04; p = 0.06). After adjusting for its association with the Altocumulus MRS, the PRS was not associated with the Cumulus MRS. There were MRS associations (Bonferroni-adjusted p < 0.04) with one SNP in the ATXN1 gene and nominally with some ESR1 SNPs. Less than 1% of the variance of the MRSs is explained by the genetic markers currently known to be associated with breast cancer risk. Discovering the genetic determinants of the bright, not white, regions of the mammogram could reveal substantial new genetic causes of breast cancer.
  • Item
    No Preview Available
    Residential surrounding greenness and DNA methylation: an epigenome-wide association study
    Xu, R ; Li, S ; Li, S ; Wong, EM ; Southey, MC ; Hopper, JL ; Abramson, MJ ; Guo, Y (Environmental Health Perspectives, 2021-08-23)
  • Item
    Thumbnail Image
    Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects
    Howe, LJ ; Nivard, MG ; Morris, TT ; Hansen, AF ; Rasheed, H ; Cho, Y ; Chittoor, G ; Ahlskog, R ; Lind, PA ; Palviainen, T ; van der Zee, MD ; Cheesman, R ; Mangino, M ; Wang, Y ; Li, S ; Klaric, L ; Ratliff, SM ; Bielak, LF ; Nygaard, M ; Giannelis, A ; Willoughby, EA ; Reynolds, CA ; Balbona, JV ; Andreassen, OA ; Ask, H ; Baras, A ; Bauer, CR ; Boomsma, DI ; Campbell, A ; Campbell, H ; Chen, Z ; Christofidou, P ; Corfield, E ; Dahm, CC ; Dokuru, DR ; Evans, LM ; de Geus, EJC ; Giddaluru, S ; Gordon, SD ; Harden, KP ; Hill, WD ; Hughes, A ; Kerr, SM ; Kim, Y ; Kweon, H ; Latvala, A ; Lawlor, DA ; Li, L ; Lin, K ; Magnus, P ; Magnusson, PKE ; Mallard, TT ; Martikainen, P ; Mills, MC ; Njolstad, PR ; Overton, JD ; Pedersen, NL ; Porteous, DJ ; Reid, J ; Silventoinen, K ; Southey, MC ; Stoltenberg, C ; Tucker-Drob, EM ; Wright, MJ ; Kweon, H ; Hewitt, JK ; Keller, MC ; Stallings, MC ; Lee, JJ ; Christensen, K ; Kardia, SLR ; Peyser, PA ; Smith, JA ; Wilson, JF ; Hopper, JL ; Hagg, S ; Spector, TD ; Pingault, J-B ; Plomin, R ; Havdahl, A ; Bartels, M ; Martin, NG ; Oskarsson, S ; Justice, AE ; Millwood, IY ; Hveem, K ; Naess, O ; Willer, CJ ; Asvold, BO ; Koellinger, PD ; Kaprio, J ; Medland, SE ; Walters, RG ; Benjamin, DJ ; Turley, P ; Evans, DM ; Smith, GD ; Hayward, C ; Brumpton, B ; Hemani, G ; Davies, NM (NATURE PORTFOLIO, 2022-05)
    Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.
  • Item
    Thumbnail Image
    Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci
    Chen, H ; Fan, S ; Stone, J ; Thompson, DJ ; Douglas, J ; Li, S ; Scott, C ; Bolla, MK ; Wang, Q ; Dennis, J ; Michailidou, K ; Li, C ; Peters, U ; Hopper, JL ; Southey, MC ; Nguyen-Dumont, T ; Nguyen, TL ; Fasching, PA ; Behrens, A ; Cadby, G ; Murphy, RA ; Aronson, K ; Howell, A ; Astley, S ; Couch, F ; Olson, J ; Milne, RL ; Giles, GG ; Haiman, CA ; Maskarinec, G ; Winham, S ; John, EM ; Kurian, A ; Eliassen, H ; Andrulis, I ; Evans, DG ; Newman, WG ; Hall, P ; Czene, K ; Swerdlow, A ; Jones, M ; Pollan, M ; Fernandez-Navarro, P ; McConnell, DS ; Kristensen, VN ; Rothstein, JH ; Wang, P ; Habel, LA ; Sieh, W ; Dunning, AM ; Pharoah, PDP ; Easton, DF ; Gierach, GL ; Tamimi, RM ; Vachon, CM ; Lindstrom, S (BMC, 2022-04-12)
    BACKGROUND: Mammographic density (MD) phenotypes, including percent density (PMD), area of dense tissue (DA), and area of non-dense tissue (NDA), are associated with breast cancer risk. Twin studies suggest that MD phenotypes are highly heritable. However, only a small proportion of their variance is explained by identified genetic variants. METHODS: We conducted a genome-wide association study, as well as a transcriptome-wide association study (TWAS), of age- and BMI-adjusted DA, NDA, and PMD in up to 27,900 European-ancestry women from the MODE/BCAC consortia. RESULTS: We identified 28 genome-wide significant loci for MD phenotypes, including nine novel signals (5q11.2, 5q14.1, 5q31.1, 5q33.3, 5q35.1, 7p11.2, 8q24.13, 12p11.2, 16q12.2). Further, 45% of all known breast cancer SNPs were associated with at least one MD phenotype at p < 0.05. TWAS further identified two novel genes (SHOX2 and CRISPLD2) whose genetically predicted expression was significantly associated with MD phenotypes. CONCLUSIONS: Our findings provided novel insight into the genetic background of MD phenotypes, and further demonstrated their shared genetic basis with breast cancer.
  • Item
    Thumbnail Image
    Population-based estimates of age-specific cumulative risk of breast cancer for pathogenic variants in ATM
    Renault, A-L ; Dowty, JG ; Steen, JA ; Li, S ; Winship, IM ; Giles, GG ; Hopper, JL ; Southey, MC ; Nguyen-Dumont, T (BMC, 2022-04-01)
    BACKGROUND: Multigene panel tests for breast cancer predisposition routinely include ATM as it is now a well-established breast cancer predisposition gene. METHODS: We included ATM in a multigene panel test applied to the Australian Breast Cancer Family Registry (ABCFR), a population-based case-control-family study of breast cancer, with the purpose of estimating the prevalence and penetrance of heterozygous ATM pathogenic variants from the family data, using segregation analysis. RESULTS: The estimated breast cancer hazard ratio for carriers of pathogenic ATM variants in the ABCFR was 1.32 (95% confidence interval 0.45-3.87; P = 0.6). The estimated cumulative risk of breast cancer to age 80 years for heterozygous ATM pathogenic variant carriers was estimated to be 13% (95% CI 4.6-30). CONCLUSIONS: Although ATM has been definitively identified as a breast cancer predisposition gene, further evidence, such as variant-specific penetrance estimates, are needed to inform risk management strategies for carriers of pathogenic variants to increase the clinical utility of population testing of this gene.
  • Item
    Thumbnail Image
    Familial Aspects of Mammographic Density Measures Associated with Breast Cancer Risk
    Nguyen, TL ; Li, S ; Dowty, JG ; Dite, GS ; Ye, Z ; Nguyen-Dumont, T ; Trinh, HN ; Evans, CF ; Tan, M ; Sung, J ; Jenkins, MA ; Giles, GG ; Southey, MC ; Hopper, JL (MDPI, 2022-03)
    Cumulus, Cumulus-percent, Altocumulus, Cirrocumulus, and Cumulus-white are mammogram risk scores (MRSs) for breast cancer based on mammographic density defined in effect by different levels of pixel brightness and adjusted for age and body mass index. We measured these MRS from digitized film mammograms for 593 monozygotic (MZ) and 326 dizygotic (DZ) female twin pairs and 1592 of their sisters. We estimated the correlations in relatives (r) and the proportion of variance due to genetic factors (heritability) using the software FISHER and predicted the familial risk ratio (FRR) associated with each MRS. The ρ estimates ranged from: 0.41 to 0.60 (standard error [SE] 0.02) for MZ pairs, 0.16 to 0.26 (SE 0.05) for DZ pairs, and 0.19 to 0.29 (SE 0.02) for sister pairs (including pairs of a twin and her non-twin sister), respectively. Heritability estimates were 39% to 69% under the classic twin model and 36% to 56% when allowing for shared non-genetic factors specific to MZ pairs. The FRRs were 1.08 to 1.17. These MRSs are substantially familial, due mostly to genetic factors that explain one-quarter to one-half as much of the familial aggregation of breast cancer that is explained by the current best polygenic risk score.
  • Item
    Thumbnail Image
    Early life affects late-life health through determining DNA methylation across the lifespan: A twin study
    Li, S ; Ye, Z ; Mather, KA ; Nguyen, TL ; Dite, GS ; Armstrong, NJ ; Wong, EM ; Thalamuthu, A ; Giles, GG ; Craig, JM ; Saffery, R ; Southey, MC ; Tan, Q ; Sachdev, PS ; Hopper, JL (ELSEVIER, 2022-03)
    BACKGROUND: Previous findings for the genetic and environmental contributions to DNA methylation variation were for limited age ranges only. We investigated the lifespan contributions and their implications for human health for the first time. METHODS: 1,720 monozygotic twin (MZ) pairs and 1,107 dizygotic twin (DZ) pairs aged 0-92 years were included. Familial correlations (i.e., correlations between twins) for 353,681 methylation sites were estimated and modelled as a function of twin pair cohabitation history. FINDINGS: The methylome average familial correlation was around zero at birth (MZ pair: -0.01; DZ pair: -0.04), increased with the time of twins living together during childhood at rates of 0.16 (95%CI: 0.12-0.20) for MZ pairs and 0.13 (95%CI: 0.07-0.20) for DZ pairs per decade, and decreased with the time of living apart during adulthood at rates of 0.026 (95%CI: 0.019-0.033) for MZ pairs and 0.027 (95%CI: 0.011-0.043) for DZ pairs per decade. Neither the increasing nor decreasing rate differed by zygosity (both P>0.1), consistent with cohabitation environment shared by twins, rather than genetic factors, influencing the methylation familial correlation changes. Familial correlations for 6.6% (23,386/353,681) sites changed with twin pair cohabitation history. These sites were enriched for high heritability, proximal promoters, and epigenetic/genetic associations with various early-life factors and late-life health conditions. INTERPRETATION: Early life strongly influences DNA methylation variation across the lifespan, and the effects are stronger for heritable sites and sites biologically relevant to the regulation of gene expression. Early life could affect late-life health through influencing DNA methylation. FUNDING: Victorian Cancer Agency, Cancer Australia, Cure Cancer Foundation.
  • Item
    Thumbnail Image
    Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants
    Li, S ; Silvestri, V ; Leslie, G ; Rebbeck, TR ; Neuhausen, SL ; Hopper, JL ; Nielsen, HR ; Lee, A ; Yang, X ; McGuffog, L ; Parsons, MT ; Andrulis, IL ; Arnold, N ; Belotti, M ; Borg, A ; Buecher, B ; Buys, SS ; Caputo, SM ; Chung, WK ; Colas, C ; Colonna, S ; Cook, J ; Daly, MB ; de la Hoya, M ; de Pauw, A ; Delhomelle, H ; Eason, J ; Engel, C ; Evans, DG ; Faust, U ; Fehm, TN ; Fostira, F ; Fountzilas, G ; Frone, M ; Garcia-Barberan, V ; Garre, P ; Gauthier-Villars, M ; Gehrig, A ; Glendon, G ; Goldgar, DE ; Golmard, L ; Greene, MH ; Hahnen, E ; Hamann, U ; Hanson, H ; Hassan, T ; Hentschel, J ; Horvath, J ; Izatt, L ; Janavicius, R ; Jiao, Y ; John, EM ; Karlan, BY ; Kim, S-W ; Konstantopoulou, I ; Kwong, A ; Lauge, A ; Lee, JW ; Lesueur, F ; Mebirouk, N ; Meindl, A ; Mouret-Fourme, E ; Musgrave, H ; Yie, JNY ; Niederacher, D ; Park, SK ; Pedersen, IS ; Ramser, J ; Ramus, SJ ; Rantala, J ; Rashid, MU ; Reichl, F ; Ritter, J ; Rump, A ; Santamarina, M ; Saule, C ; Schmidt, G ; Schmutzler, RK ; Senter, L ; Shariff, S ; Singer, CF ; Southey, MC ; Stoppa-Lyonnet, D ; Sutter, C ; Tan, Y ; Teo, SH ; Terry, MB ; Thomassen, M ; Tischkowitz, M ; Toland, AE ; Torres, D ; Vega, A ; Wagner, SA ; Wang-Gohrke, S ; Wappenschmidt, B ; Weber, BHF ; Yannoukakos, D ; Spurdle, AB ; Easton, DF ; Chenevix-Trench, G ; Ottini, L ; Antoniou, AC (LIPPINCOTT WILLIAMS & WILKINS, 2022-05-10)
    PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management. METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment. RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers. CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.