Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    No Preview Available
    Genome-wide association analysis identifies three new breast cancer susceptibility loci
    Ghoussaini, M ; Fletcher, O ; Michailidou, K ; Turnbull, C ; Schmidt, MK ; Dicks, E ; Dennis, J ; Wang, Q ; Humphreys, MK ; Luccarini, C ; Baynes, C ; Conroy, D ; Maranian, M ; Ahmed, S ; Driver, K ; Johnson, N ; Orr, N ; Silva, IDS ; Waisfisz, Q ; Meijers-Heijboer, H ; Uitterlinden, AG ; Rivadeneira, F ; Hall, P ; Czene, K ; Irwanto, A ; Liu, J ; Nevanlinna, H ; Aittomaki, K ; Blomqvist, C ; Meindl, A ; Schmutzler, RK ; Mueller-Myhsok, B ; Lichtner, P ; Chang-Claude, J ; Hein, R ; Nickels, S ; Flesch-Janys, D ; Tsimiklis, H ; Makalic, E ; Schmidt, D ; Bui, M ; Hopper, JL ; Apicella, C ; Park, DJ ; Southey, M ; Hunter, DJ ; Chanock, SJ ; Broeks, A ; Verhoef, S ; Hogervorst, FBL ; Fasching, PA ; Lux, MP ; Beckmann, MW ; Ekici, AB ; Sawyer, E ; Tomlinson, I ; Kerin, M ; Marme, F ; Schneeweiss, A ; Sohn, C ; Burwinkel, B ; Guenel, P ; Truong, T ; Cordina-Duverger, E ; Menegaux, F ; Bojesen, SE ; Nordestgaard, BG ; Nielsen, SF ; Flyger, H ; Milne, RL ; Rosario Alonso, M ; Gonzalez-Neira, A ; Benitez, J ; Anton-Culver, H ; Ziogas, A ; Bernstein, L ; Dur, CC ; Brenner, H ; Mueller, H ; Arndt, V ; Stegmaier, C ; Justenhoven, C ; Brauch, H ; Bruening, T ; Wang-Gohrke, S ; Eilber, U ; Doerk, T ; Schuermann, P ; Bremer, M ; Hillemanns, P ; Bogdanova, NV ; Antonenkova, NN ; Rogov, YI ; Karstens, JH ; Bermisheva, M ; Prokofieva, D ; Khusnutdinova, E ; Lindblom, A ; Margolin, S ; Mannermaa, A ; Kataja, V ; Kosma, V-M ; Hartikainen, JM ; Lambrechts, D ; Yesilyurt, BT ; Floris, G ; Leunen, K ; Manoukian, S ; Bonanni, B ; Fortuzzi, S ; Peterlongo, P ; Couch, FJ ; Wang, X ; Stevens, K ; Lee, A ; Giles, GG ; Baglietto, L ; Severi, G ; McLean, C ; Alnaes, GG ; Kristensen, V ; Borrensen-Dale, A-L ; John, EM ; Miron, A ; Winqvist, R ; Pylkas, K ; Jukkola-Vuorinen, A ; Kauppila, S ; Andrulis, IL ; Glendon, G ; Mulligan, AM ; Devilee, P ; van Asperen, CJ ; Tollenaar, RAEM ; Seynaeve, C ; Figueroa, JD ; Garcia-Closas, M ; Brinton, L ; Lissowska, J ; Hooning, MJ ; Hollestelle, A ; Oldenburg, RA ; van den Ouweland, AMW ; Cox, A ; Reed, MWR ; Shah, M ; Jakubowska, A ; Lubinski, J ; Jaworska, K ; Durda, K ; Jones, M ; Schoemaker, M ; Ashworth, A ; Swerdlow, A ; Beesley, J ; Chen, X ; Muir, KR ; Lophatananon, A ; Rattanamongkongul, S ; Chaiwerawattana, A ; Kang, D ; Yoo, K-Y ; Noh, D-Y ; Shen, C-Y ; Yu, J-C ; Wu, P-E ; Hsiung, C-N ; Perkins, A ; Swann, R ; Velentzis, L ; Eccles, DM ; Tapper, WJ ; Gerty, SM ; Graham, NJ ; Ponder, BAJ ; Chenevix-Trench, G ; Pharoah, PDP ; Lathrop, M ; Dunning, AM ; Rahman, N ; Peto, J ; Easton, DF (NATURE PUBLISHING GROUP, 2012-03)
    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.
  • Item
    Thumbnail Image
    Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk
    Stevens, KN ; Garcia-Closas, M ; Fredericksen, Z ; Kosel, M ; Pankratz, VS ; Hopper, JL ; Dite, GS ; Apicella, C ; Southey, MC ; Schmidt, MK ; Broeks, A ; Van 't Veer, LJ ; Tollenaar, RAEM ; Fasching, PA ; Beckmann, MW ; Hein, A ; Ekici, AB ; Johnson, N ; Peto, J ; Silva, IDS ; Gibson, L ; Sawyer, E ; Tomlinson, I ; Kerin, MJ ; Chanock, S ; Lissowska, J ; Hunter, DJ ; Hoover, RN ; Thomas, GD ; Milne, RL ; Perez, JIA ; Gonzalez-Neira, A ; Benitez, J ; Burwinkel, B ; Meindl, A ; Schmutzler, RK ; Bartrar, CR ; Hamann, U ; Ko, YD ; Bruening, T ; Chang-Claude, J ; Hein, R ; Wang-Gohrke, S ; Doerk, T ; Schuermann, P ; Bremer, M ; Hillemanns, P ; Bogdanova, N ; Zalutsky, JV ; Rogov, YI ; Antonenkova, N ; Lindblom, A ; Margolin, S ; Mannermaa, A ; Kataja, V ; Kosma, V-M ; Hartikainen, J ; Chenevix-Trench, G ; Chen, X ; Peterlongo, P ; Bonanni, B ; Bernard, L ; Manoukian, S ; Wang, X ; Cerhan, J ; Vachon, CM ; Olson, J ; Giles, GG ; Baglietto, L ; McLean, CA ; Severi, G ; John, EM ; Miron, A ; Winqvist, R ; Pylkaes, K ; Jukkola-Vuorinen, A ; Grip, M ; Andrulis, I ; Knight, JA ; Glendon, G ; Mulligan, AM ; Cox, A ; Brock, IW ; Elliott, G ; Cross, SS ; Pharoah, PP ; Dunning, AM ; Pooley, KA ; Humphreys, MK ; Wang, J ; Kang, D ; Yoo, K-Y ; Noh, D-Y ; Sangrajrang, S ; Gabrieau, V ; Brennan, P ; Mckay, J ; Anton-Culver, H ; Ziogas, A ; Couch, FJ ; Easton, DF (NATURE PUBLISHING GROUP, 2011-12-06)
    BACKGROUND: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. METHODS: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). RESULTS: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95-0.99, P=4.6 × 10(-3)), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96-1.01, P=0.139). CONCLUSION: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer.
  • Item
    Thumbnail Image
    Increased cancer risks for relatives of very early-onset breast cancer cases with and without BRCA1 and BRCA2 mutations
    Dite, GS ; Whittemore, AS ; Knight, JA ; John, EM ; Milne, RL ; Andrulis, IL ; Southey, MC ; McCredie, MRE ; Giles, GG ; Miron, A ; Phipps, AI ; West, DW ; Hopper, JL (NATURE PUBLISHING GROUP, 2010-09-28)
    BACKGROUND: Little is known regarding cancer risks for relatives of women with very early-onset breast cancer. METHODS: We studied 2208 parents and siblings of 504 unselected population-based Caucasian women with breast cancer diagnosed before age 35 years (103 from USA, 124 from Canada and 277 from Australia), 41 known to carry a mutation (24 in BRCA1, 16 in BRCA2 and one in both genes). Cancer-specific standardised incidence ratios (SIRs) were estimated by comparing the number of affected relatives (50% verified overall) with that expected based on incidences specific for country, sex, age and year of birth. RESULTS: For relatives of carriers, the female breast cancer SIRs were 13.13 (95% CI 6.57-26.26) and 12.52 (5.21-30.07) for BRCA1 and BRCA2, respectively. The ovarian cancer SIR was 12.38 (3.1-49.51) for BRCA1 and the prostate cancer SIR was 18.55 (4.64-74.17) for BRCA2. For relatives of non-carriers, the SIRs for female breast, prostate, lung, brain and urinary cancers were 4.03 (2.91-5.93), 5.25 (2.50-11.01), 7.73 (4.74-12.62), 5.19 (2.33-11.54) and 4.35 (1.81-10.46), respectively. For non-carriers, the SIRs remained elevated and were statistically significant for breast and prostate cancer when based on verified cancers. CONCLUSION: First-degree relatives of women with very early-onset breast cancer are at increased risk of cancers not explained by BRCA1 and BRCA2 mutations.
  • Item
    Thumbnail Image
    Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)
    Osorio, A ; Milne, RL ; Pita, G ; Peterlongo, P ; Heikkinen, T ; Simard, J ; Chenevix-Trench, G ; Spurdle, AB ; Beesley, J ; Chen, X ; Healey, S ; Neuhausen, SL ; Ding, YC ; Couch, FJ ; Wang, X ; Lindor, N ; Manoukian, S ; Barile, M ; Viel, A ; Tizzoni, L ; Szabo, CI ; Foretova, L ; Zikan, M ; Claes, K ; Greene, MH ; Mai, P ; Rennert, G ; Lejbkowicz, F ; Barnett-Griness, O ; Andrulis, IL ; Ozcelik, H ; Weerasooriya, N ; Gerdes, A-M ; Thomassen, M ; Cruger, DG ; Caligo, MA ; Friedman, E ; Kaufman, B ; Laitman, Y ; Cohen, S ; Kontorovich, T ; Gershoni-Baruch, R ; Dagan, E ; Jernstrom, H ; Askmalm, MS ; Arver, B ; Malmer, B ; Domchek, SM ; Nathanson, KL ; Brunet, J ; Ramon y Cajal, T ; Yannoukakos, D ; Hamann, U ; Hogervorst, FBL ; Verhoef, S ; Gomez Garcia, EB ; Wijnen, JT ; van den Ouweland, A ; Easton, DF ; Peock, S ; Cook, M ; Oliver, CT ; Frost, D ; Luccarini, C ; Evans, DG ; Lalloo, F ; Eeles, R ; Pichert, G ; Cook, J ; Hodgson, S ; Morrison, PJ ; Douglas, F ; Godwin, AK ; Sinilnikova, OM ; Barjhoux, L ; Stoppa-Lyonnet, D ; Moncoutier, V ; Giraud, S ; Cassini, C ; Olivier-Faivre, L ; Revillion, F ; Peyrat, J-P ; Muller, D ; Fricker, J-P ; Lynch, HT ; John, EM ; Buys, S ; Daly, M ; Hopper, JL ; Terry, MB ; Miron, A ; Yassin, Y ; Goldgar, D ; Singer, CF ; Gschwantler-Kaulich, D ; Pfeiler, G ; Spiess, A-C ; Hansen, TVO ; Johannsson, OT ; Kirchhoff, T ; Offit, K ; Kosarin, K ; Piedmonte, M ; Rodriguez, GC ; Wakeley, K ; Boggess, JF ; Basil, J ; Schwartz, PE ; Blank, SV ; Toland, AE ; Montagna, M ; Casella, C ; Imyanitov, EN ; Allavena, A ; Schmutzler, RK ; Versmold, B ; Engel, C ; Meindl, A ; Ditsch, N ; Arnold, N ; Niederacher, D ; Deissler, H ; Fiebig, B ; Varon-Mateeva, R ; Schaefer, D ; Froster, UG ; Caldes, T ; de la Hoya, M ; McGuffog, L ; Antoniou, AC ; Nevanlinna, H ; Radice, P ; Benitez, J (SPRINGERNATURE, 2009-12-08)
    BACKGROUND: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. METHODS: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. RESULTS: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P = 0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P = 0.5) mutation carriers. CONCLUSION: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out.
  • Item
    No Preview Available
    Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
    Garcia-Closas, M ; Hall, P ; Nevanlinna, H ; Pooley, K ; Morrison, J ; Richesson, DA ; Bojesen, SE ; Nordestgaard, BG ; Axelsson, CK ; Arias, JI ; Milne, RL ; Ribas, G ; Gonzalez-Neira, A ; Benitez, J ; Zamora, P ; Brauch, H ; Justenhoven, C ; Hamann, U ; Ko, Y-D ; Bruening, T ; Haas, S ; Doerk, T ; Schuermann, P ; Hillemanns, P ; Bogdanova, N ; Bremer, M ; Karstens, JH ; Fagerholm, R ; Aaltonen, K ; Aittomaki, K ; Von Smitten, K ; Blomqvist, C ; Mannermaa, A ; Uusitupa, M ; Eskelinen, M ; Tengstrom, M ; Kosma, V-M ; Kataja, V ; Chenevix-Trench, G ; Spurdle, AB ; Beesley, J ; Chen, X ; Devilee, P ; Van Asperen, CJ ; Jacobi, CE ; Tollenaar, RAEM ; Huijts, PEA ; Klijn, JGM ; Chang-Claude, J ; Kropp, S ; Slanger, T ; Flesch-Janys, D ; Mutschelknauss, E ; Salazar, R ; Wang-Gohrke, S ; Couch, F ; Goode, EL ; Olson, JE ; Vachon, C ; Fredericksen, ZS ; Giles, GG ; Baglietto, L ; Severi, G ; Hopper, JL ; English, DR ; Southey, MC ; Haiman, CA ; Henderson, BE ; Kolonel, LN ; Le Marchand, L ; Stram, DO ; Hunter, DJ ; Hankinson, SE ; Cox, DG ; Tamimi, R ; Kraft, P ; Sherman, ME ; Chanock, SJ ; Lissowska, J ; Brinton, LA ; Peplonska, B ; Klijn, JGM ; Hooning, MJ ; Meijers-Heijboer, H ; Collee, JM ; Van den Ouweland, A ; Uitterlinden, AG ; Liu, J ; Lin, LY ; Yuqing, L ; Humphreys, K ; Czene, K ; Cox, A ; Balasubramanian, SP ; Cross, SS ; Reed, MWR ; Blows, F ; Driver, K ; Dunning, A ; Tyrer, J ; Ponder, BAJ ; Sangrajrang, S ; Brennan, P ; Mckay, J ; Odefrey, F ; Gabrieau, V ; Sigurdson, A ; Doody, M ; Struewing, JP ; Alexander, B ; Easton, DF ; Pharoah, PD ; Leal, SM (PUBLIC LIBRARY SCIENCE, 2008-04)
    A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  • Item
    No Preview Available
    An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers:: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2(CIMBA)
    Chenevix-Trench, G ; Milne, RL ; Antoniou, AC ; Couch, FJ ; Easton, DF ; Goldgar, DE (BIOMED CENTRAL LTD, 2007)
    BRCA1 and BRCA2 mutations exhibit variable penetrance that is likely to be accounted for, in part, by other genetic factors among carriers. However, studies aimed at identifying these factors have been limited in size and statistical power, and have yet to identify any convincingly validated modifiers of the BRCA1 and BRCA2 phenotype. To generate sufficient statistical power to identify modifier genes, the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) has been established. CIMBA contains about 30 affiliated groups who together have collected DNA and clinical data from approximately 10,000 BRCA1 and 5,000 BRCA2 mutation carriers. Initial efforts by CIMBA to identify modifiers of breast cancer risk for BRCA1 and BRCA2 mutation carriers have focused on validation of common genetic variants previously associated with risk in smaller studies of carriers or unselected breast cancers. Future studies will involve replication of findings from pathway-based and genome-wide association studies in both unselected and familial breast cancer. The identification of genetic modifiers of breast cancer risk for BRCA1 and BRCA2 mutation carriers will lead to an improved understanding of breast cancer and may prove useful for the determination of individualized risk of cancer amongst carriers.
  • Item
    No Preview Available
    More breast cancer genes?
    Hopper, JL (BIOMED CENTRAL LTD, 2001)
    A new gene associated with a high risk of breast cancer, termed BRCAX, may exist on chromosome 13q. Tumours from multicase Nordic breast cancer families, in which mutations in BRCA1 and BRCA2 had been excluded, were analyzed using comparative genomic hybridization in order to identify a region of interest, which was apparently confirmed and refined using linkage analysis on an independent sample. The present commentary discusses this work. It also asks why there should exist genetic variants associated with susceptibility to breast cancer other than mutations in BRCA1 and BRCA2, and what might be their modes of inheritance, allele frequencies and risks. Replication studies will be needed to clarify whether there really is a tumour suppressor gene other than BRCA2 on chromosome 13q.
  • Item
    Thumbnail Image
    Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2
    Kirchhoff, T ; Gaudet, MM ; Antoniou, AC ; McGuffog, L ; Humphreys, MK ; Dunning, AM ; Bojesen, SE ; Nordestgaard, BG ; Flyger, H ; Kang, D ; Yoo, K-Y ; Noh, D-Y ; Ahn, S-H ; Dork, T ; Schuermann, P ; Karstens, JH ; Hillemanns, P ; Couch, FJ ; Olson, J ; Vachon, C ; Wang, X ; Cox, A ; Brock, I ; Elliott, G ; Reed, MWR ; Burwinkel, B ; Meindl, A ; Brauch, H ; Hamann, U ; Ko, Y-D ; Broeks, A ; Schmidt, MK ; Van 't Veer, LJ ; Braaf, LM ; Johnson, N ; Fletcher, O ; Gibson, L ; Peto, J ; Turnbull, C ; Seal, S ; Renwick, A ; Rahman, N ; Wu, P-E ; Yu, J-C ; Hsiung, C-N ; Shen, C-Y ; Southey, MC ; Hopper, JL ; Hammet, F ; Van Dorpe, T ; Dieudonne, A-S ; Hatse, S ; Lambrechts, D ; Andrulis, IL ; Bogdanova, N ; Antonenkova, N ; Rogov, JI ; Prokofieva, D ; Bermisheva, M ; Khusnutdinova, E ; van Asperen, CJ ; Tollenaar, RAEM ; Hooning, MJ ; Devilee, P ; Margolin, S ; Lindblom, A ; Milne, RL ; Ignacio Arias, J ; Pilar Zamora, M ; Benitez, J ; Severi, G ; Baglietto, L ; Giles, GG ; Spurdle, AB ; Beesley, J ; Chen, X ; Holland, H ; Healey, S ; Wang-Gohrke, S ; Chang-Claude, J ; Mannermaa, A ; Kosma, V-M ; Kauppinen, J ; Kataja, V ; Agnarsson, BA ; Caligo, MA ; Godwin, AK ; Nevanlinna, H ; Heikkinen, T ; Fredericksen, Z ; Lindor, N ; Nathanson, KL ; Domchek, SM ; Loman, N ; Karlsson, P ; Askmalm, MS ; Melin, B ; von Wachenfeldt, A ; Hogervorst, FBL ; Verheus, M ; Rookus, MA ; Seynaeve, C ; Oldenburg, RA ; Ligtenberg, MJ ; Ausems, MGEM ; Aalfs, CM ; Gille, HJP ; Wijnen, JT ; Garcia, EBG ; Peock, S ; Cook, M ; Oliver, CT ; Frost, D ; Luccarini, C ; Pichert, G ; Davidson, R ; Chu, C ; Eccles, D ; Ong, K-R ; Cook, J ; Douglas, F ; Hodgson, S ; Evans, DG ; Eeles, R ; Gold, B ; Pharoah, PDP ; Offit, K ; Chenevix-Trench, G ; Easton, DF ; Prokunina-Olsson, L (PUBLIC LIBRARY SCIENCE, 2012-06-29)
    Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00-1.06, p = 0.023). There was evidence for heterogeneity in the ORs among studies (I(2) = 49.3%; p = <0.004). In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80-1.00, p = 0.048), indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.
  • Item
    Thumbnail Image
    Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study
    Milne, RL ; Gaudet, MM ; Spurdle, AB ; Fasching, PA ; Couch, FJ ; Benitez, J ; Arias Perez, JI ; Pilar Zamora, M ; Malats, N ; dos Santos Silva, I ; Gibson, LJ ; Fletcher, O ; Johnson, N ; Anton-Culver, H ; Ziogas, A ; Figueroa, J ; Brinton, L ; Sherman, ME ; Lissowska, J ; Hopper, JL ; Dite, GS ; Apicella, C ; Southey, MC ; Sigurdson, AJ ; Linet, MS ; Schonfeld, SJ ; Freedman, DM ; Mannermaa, A ; Kosma, V-M ; Kataja, V ; Auvinen, P ; Andrulis, IL ; Glendon, G ; Knight, JA ; Weerasooriya, N ; Cox, A ; Reed, MWR ; Cross, SS ; Dunning, AM ; Ahmed, S ; Shah, M ; Brauch, H ; Ko, Y-D ; Bruening, T ; Lambrechts, D ; Reumers, J ; Smeets, A ; Wang-Gohrke, S ; Hall, P ; Czene, K ; Liu, J ; Irwanto, AK ; Chenevix-Trench, G ; Holland, H ; Giles, GG ; Baglietto, L ; Severi, G ; Bojensen, SE ; Nordestgaard, BG ; Flyger, H ; John, EM ; West, DW ; Whittemore, AS ; Vachon, C ; Olson, JE ; Fredericksen, Z ; Kosel, M ; Hein, R ; Vrieling, A ; Flesch-Janys, D ; Heinz, J ; Beckmann, MW ; Heusinger, K ; Ekici, AB ; Haeberle, L ; Humphreys, MK ; Morrison, J ; Easton, DF ; Pharoah, PD ; Garcia-Closas, M ; Goode, EL ; Chang-Claude, J (BIOMED CENTRAL LTD, 2010)
    INTRODUCTION: Several common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer Association Consortium. METHODS: We evaluated two-way interactions between each of age at menarche, ever having had a live birth, number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312 (MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11), 3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative effects. RESULTS: These analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208 controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by chance. Analyses were repeated using data from 11 population-based studies, and results were very similar. CONCLUSIONS: The relative risks for breast cancer associated with the common susceptibility variants identified to date do not appear to vary across women with different reproductive histories or body mass index (BMI). The assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction models appears justified.
  • Item
    Thumbnail Image
    Disease-specific prospective family study cohorts enriched for familial risk.
    Hopper, JL (Springer Science and Business Media LLC, 2011-02-27)
    Most common diseases demonstrate familial aggregation; the ratio of the risk for relatives of affected people to the risk for relatives of unaffected people (the familial risk ratio)) > 1. This implies there are underlying genetic and/or environmental risk factors shared by relatives. The risk gradient across this underlying 'familial risk profile', which can be predicted from family history and measured familial risk factors, is typically strong. Under a multiplicative model, the ratio of the risk for people in the upper 25% of familial risk to the risk for those in the lower 25% (the inter-quartile risk gradient) is an order of magnitude greater than the familial risk ratio. If familial risk ratio = 2 for first-degree relatives, in terms of familial risk profile: (a) people in the upper quartile will be at more than 20 times the risk of those in the lower quartile; and (b) about 90% of disease will occur in people above the median. Historically, therefore, epidemiology has compared cases with controls dissimilar for underlying familial risk profile. Were gene-environment and gene-gene interactions to exist, environmental and genetic effects could be stronger for people with increased familial risk profile. Studies in which controls are better matched to cases for familial risk profile might be more informative, especially if both cases and controls are over-sampled for increased familial risk. Prospective family study cohort (ProF-SC) designs involving people across a range of familial risk profile provide such a resource for epidemiological, genetic, behavioural, psycho-social and health utilisation research. The prospective aspect gives credibility to risk estimates. The familial aspect allows family-based designs, matching for unmeasured factors, adjusting for underlying familial risk profile, and enhanced cohort maintenance.