Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    Thumbnail Image
    Intratumoral presence of the genotoxic gut bacteria pks+ E. coli, Enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum and their association with clinicopathological and molecular features of colorectal cancer
    Joo, JE ; Chu, YL ; Georgeson, P ; Walker, R ; Mahmood, K ; Clendenning, M ; Meyers, AL ; Como, J ; Joseland, S ; Preston, SG ; Diepenhorst, N ; Toner, J ; Ingle, DJ ; Sherry, NL ; Metz, A ; Lynch, BM ; Milne, RL ; Southey, MC ; Hopper, JL ; Win, AK ; Macrae, FA ; Winship, IM ; Rosty, C ; Jenkins, MA ; Buchanan, DD (Springer Nature, 2024)
    Background: This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). Methods: We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. Results: Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). Conclusion: Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.
  • Item
    No Preview Available
    Does genetic predisposition modify the effect of lifestyle-related factors on DNA methylation?
    Yu, C ; Hodge, AM ; Wong, EM ; Joo, JE ; Makalic, E ; Schmidt, DF ; Buchanan, DD ; Severi, G ; Hopper, JL ; English, DR ; Giles, GG ; Milne, RL ; Southey, MC ; Dugue, P-A (TAYLOR & FRANCIS INC, 2022-12-02)
    Lifestyle-related phenotypes have been shown to be heritable and associated with DNA methylation. We aimed to investigate whether genetic predisposition to tobacco smoking, alcohol consumption, and higher body mass index (BMI) moderates the effect of these phenotypes on blood DNA methylation. We calculated polygenic scores (PGS) to quantify genetic predisposition to these phenotypes using training (N = 7,431) and validation (N = 4,307) samples. Using paired genetic-methylation data (N = 4,307), gene-environment interactions (i.e., PGS × lifestyle) were assessed using linear mixed-effects models with outcomes: 1) methylation at sites found to be strongly associated with smoking (1,061 CpGs), alcohol consumption (459 CpGs), and BMI (85 CpGs) and 2) two epigenetic ageing measures, PhenoAge and GrimAge. In the validation sample, PGS explained ~1.4% (P = 1 × 10-14), ~0.6% (P = 2 × 10-7), and ~8.7% (P = 7 × 10-87) of variance in smoking initiation, alcohol consumption, and BMI, respectively. Nominally significant interaction effects (P < 0.05) were found at 61, 14, and 7 CpGs for smoking, alcohol consumption, and BMI, respectively. There was strong evidence that all lifestyle-related phenotypes were positively associated with PhenoAge and GrimAge, except for alcohol consumption with PhenoAge. There was weak evidence that the association of smoking with GrimAge was attenuated in participants genetically predisposed to smoking (interaction term: -0.022, standard error [SE] = 0.012, P = 0.058) and that the association of alcohol consumption with PhenoAge was attenuated in those genetically predisposed to drink alcohol (interaction term: -0.030, SE = 0.015, P = 0.041). In conclusion, genetic susceptibility to unhealthy lifestyles did not strongly modify the association between observed lifestyle behaviour and blood DNA methylation. Potential associations were observed for epigenetic ageing measures, which should be replicated in additional studies.
  • Item
    No Preview Available
    Heritable methylation marks associated with prostate cancer risk.
    Dowty, JG ; Yu, C ; Hosseinpour, M ; Joo, JE ; Wong, EM ; Nguyen-Dumont, T ; Rosenbluh, J ; Giles, GG ; Milne, RL ; MacInnis, RJ ; Dugué, P-A ; Southey, MC (Springer Science and Business Media LLC, 2023-07)
    DNA methylation marks that are inherited from parents to offspring are known to play a role in cancer risk and could explain part of the familial risk for cancer. We therefore conducted a genome-wide search for heritable methylation marks associated with prostate cancer risk. Peripheral blood DNA methylation was measured for 133 of the 469 members of 25 multiple-case prostate cancer families, using the EPIC array. We used these families to systematically search the genome for methylation marks with Mendelian patterns of inheritance, then we tested the 1,000 most heritable marks for association with prostate cancer risk. After correcting for multiple testing, 41 heritable methylation marks were associated with prostate cancer risk. Separate analyses, based on 869 incident cases and 869 controls from a prospective cohort study, showed that 9 of these marks near the metastable epiallele VTRNA2-1 were also nominally associated with aggressive prostate cancer risk in the population.
  • Item
    No Preview Available
    Methylation scores for smoking, alcohol consumption and body mass index and risk of seven types of cancer
    Dugue, P-A ; Yu, C ; Hodge, AMM ; Wong, EM ; Joo, JEE ; Jung, C-H ; Schmidt, D ; Makalic, E ; Buchanan, DDD ; Severi, G ; English, DRR ; Hopper, JLL ; Milne, RLL ; Giles, GGG ; Southey, MCC (WILEY, 2023-08-01)
    Methylation marks of exposure to health risk factors may be useful markers of cancer risk as they might better capture current and past exposures than questionnaires, and reflect different individual responses to exposure. We used data from seven case-control studies nested within the Melbourne Collaborative Cohort Study of blood DNA methylation and risk of colorectal, gastric, kidney, lung, prostate and urothelial cancer, and B-cell lymphoma (N cases = 3123). Methylation scores (MS) for smoking, body mass index (BMI), and alcohol consumption were calculated based on published data as weighted averages of methylation values. Rate ratios (RR) and 95% confidence intervals for association with cancer risk were estimated using conditional logistic regression and expressed per SD increase of the MS, with and without adjustment for health-related confounders. The contribution of MS to discriminate cases from controls was evaluated using the area under the curve (AUC). After confounder adjustment, we observed: large associations (RR = 1.5-1.7) with lung cancer risk for smoking MS; moderate associations (RR = 1.2-1.3) with urothelial cancer risk for smoking MS and with mature B-cell neoplasm risk for BMI and alcohol MS; moderate to small associations (RR = 1.1-1.2) for BMI and alcohol MS with several cancer types and cancer overall. Generally small AUC increases were observed after inclusion of several MS in the same model (colorectal, gastric, kidney, urothelial cancers: +3%; lung cancer: +7%; B-cell neoplasms: +8%). Methylation scores for smoking, BMI and alcohol consumption show independent associations with cancer risk, and may provide some improvements in risk prediction.
  • Item
    Thumbnail Image
    Repeatability of methylation measures using a QIAseq targeted methyl panel and comparison with the Illumina HumanMethylation450 assay
    Yu, C ; Dugue, P-A ; Dowty, JG ; Hammet, F ; Joo, JE ; Wong, EM ; Hosseinpour, M ; Giles, GG ; Hopper, JL ; Tu, N-D ; MacInnis, RJ ; Southey, MC (SPRINGERNATURE, 2021-10-24)
    OBJECTIVE: In previous studies using Illumina Infinium methylation arrays, we have identified DNA methylation marks associated with cancer predisposition and progression. In the present study, we have sought to find appropriate technology to both technically validate our data and expand our understanding of DNA methylation in these genomic regions. Here, we aimed to assess the repeatability of methylation measures made using QIAseq targeted methyl panel and to compare them with those obtained from the Illumina HumanMethylation450 (HM450K) assay. We included in the analysis high molecular weight DNA extracted from whole blood (WB) and DNA extracted from formalin-fixed paraffin-embedded tissues (FFPE). RESULTS: The repeatability of QIAseq-methylation measures was assessed at 40 CpGs, using the Intraclass Correlation Coefficient (ICC). The mean ICCs and 95% confidence intervals (CI) were 0.72 (0.62-0.81), 0.59 (0.47-0.71) and 0.80 (0.73-0.88) for WB, FFPE and both sample types combined, respectively. For technical replicates measured using QIAseq and HM450K, the mean ICCs (95% CI) were 0.53 (0.39-0.68), 0.43 (0.31-0.56) and 0.70 (0.59-0.80), respectively. Bland-Altman plots indicated good agreement between QIAseq and HM450K measurements. These results demonstrate that the QIAseq targeted methyl panel produces reliable and reproducible methylation measurements across the 40 CpGs that were examined.
  • Item
    Thumbnail Image
    Association of FOXO3 Blood DNA Methylation with Cancer Risk, Cancer Survival, and Mortality
    Yu, C ; Hodge, AM ; Wong, EM ; Joo, JE ; Makalic, E ; Schmidt, D ; Buchanan, DD ; Hopper, JL ; Giles, GG ; Southey, MC ; Dugue, P-A (MDPI, 2021-12)
    Genetic variants in FOXO3 are associated with longevity. Here, we assessed whether blood DNA methylation at FOXO3 was associated with cancer risk, survival, and mortality. We used data from eight prospective case-control studies of breast (n = 409 cases), colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869), and urothelial (n = 428) cancer and B-cell lymphoma (n = 438). Case-control pairs were matched on age, sex, country of birth, and smoking (lung cancer study). Conditional logistic regression was used to assess associations between cancer risk and methylation at 45 CpGs of FOXO3 included on the HumanMethylation450 assay. Mixed-effects Cox models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations with cancer survival (total n = 2286 deaths). Additionally, using data from 1088 older participants, we assessed associations of FOXO3 methylation with overall and cause-specific mortality (n = 354 deaths). Methylation at a CpG in the first exon region of FOXO3 (6:108882981) was associated with gastric cancer survival (HR = 2.39, 95% CI: 1.60-3.56, p = 1.9 × 10-5). Methylation at three CpGs in TSS1500 and gene body was associated with lung cancer survival (p < 6.1 × 10-5). We found no evidence of associations of FOXO3 methylation with cancer risk and mortality. Our findings may contribute to understanding the implication of FOXO3 in longevity.
  • Item
    Thumbnail Image
    DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies
    Dugue, P-A ; Bassett, JK ; Joo, JE ; Jung, C-H ; Wong, EM ; Moreno-Betancur, M ; Schmidt, D ; Makalic, E ; Li, S ; Severi, G ; Hodge, AM ; Buchanan, DD ; English, DR ; Hopper, JL ; Southey, MC ; Giles, GG ; Milne, RL (WILEY, 2018-04-15)
    The association between aging and cancer is complex. Recent studies have developed measures of biological aging based on DNA methylation and called them "age acceleration." We aimed to assess the associations of age acceleration with risk of and survival from seven common cancers. Seven case-control studies of DNA methylation and colorectal, gastric, kidney, lung, prostate and urothelial cancer and B-cell lymphoma nested in the Melbourne Collaborative Cohort Study were conducted. Cancer cases, vital status and cause of death were ascertained through linkage with cancer and death registries. Conditional logistic regression and Cox models were used to estimate odds ratios (OR) and hazard ratios (HR) and 95% confidence intervals (CI) for associations of five age acceleration measures derived from the Human Methylation 450 K Beadchip assay with cancer risk (N = 3,216 cases) and survival (N = 1,726 deaths), respectively. Epigenetic aging was associated with increased cancer risk, ranging from 4% to 9% per five-year age acceleration for the 5 measures considered. Heterogeneity by study was observed, with stronger associations for risk of kidney cancer and B-cell lymphoma. An associated increased risk of death following cancer diagnosis ranged from 2% to 6% per five-year age acceleration, with no evidence of heterogeneity by cancer site. Cancer risk and mortality were increased by 15-30% for the fourth versus first quartile of age acceleration. DNA methylation-based measures of biological aging are associated with increased cancer risk and shorter cancer survival, independently of major health risk factors.
  • Item
    Thumbnail Image
    Genome-Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case-Control Study
    FitzGerald, LM ; Naeem, H ; Makalic, E ; Schmidt, DF ; Dowty, JG ; Joo, JE ; Jung, C-H ; Bassett, JK ; Dugue, P-A ; Chung, J ; Lonie, A ; Milne, RL ; Wong, EM ; Hopper, JL ; English, DR ; Severi, G ; Baglietto, L ; Pedersen, J ; Giles, GG ; Southey, MC (WILEY, 2017-04-01)
  • Item
    Thumbnail Image
    Alcohol consumption is associated with widespread changes in blood DNA methylation: Analysis of cross-sectional and longitudinal data
    Dugue, P-A ; Wilson, R ; Lehne, B ; Jayasekara, H ; Wang, X ; Jung, C-H ; Joo, JE ; Makalic, E ; Schmidt, DF ; Baglietto, L ; Severi, G ; Gieger, C ; Ladwig, K-H ; Peters, A ; Kooner, JS ; Southey, MC ; English, DR ; Waldenberger, M ; Chambers, JC ; Giles, GG ; Milne, RL (WILEY, 2021-01)
    DNA methylation may be one of the mechanisms by which alcohol consumption is associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA methylation association study of alcohol consumption and a longitudinal analysis of repeated measurements taken several years apart. Using the Illumina HumanMethylation450 BeadChip, DNA methylation was measured in blood samples from 5606 Melbourne Collaborative Cohort Study (MCCS) participants. For 1088 of them, these measures were repeated using blood samples collected a median of 11 years later. Associations between alcohol intake and blood DNA methylation were assessed using linear mixed-effects regression models. Independent data from the London Life Sciences Prospective Population (LOLIPOP) (N = 4042) and Cooperative Health Research in the Augsburg Region (KORA) (N = 1662) cohorts were used to replicate associations discovered in the MCCS. Cross-sectional analyses identified 1414 CpGs associated with alcohol intake at P < 10-7 , 1243 of which had not been reported previously. Of these novel associations, 1078 were replicated (P < .05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated 403 of 518 previously reported associations. Interaction analyses suggested that associations were stronger for women, non-smokers, and participants genetically predisposed to consume less alcohol. Of the 1414 CpGs, 530 were differentially methylated (P < .05) in former compared with current drinkers. Longitudinal associations between the change in alcohol intake and the change in methylation were observed for 513 of the 1414 cross-sectional associations. Our study indicates that alcohol intake is associated with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that the methylation status of alcohol-associated CpGs may change with alcohol consumption changes in adulthood.
  • Item
    Thumbnail Image
    Heritable methylation marks associated with breast and prostate cancer risk
    Dugue, P-A ; Dowty, JG ; Joo, JE ; Wong, EM ; Makalic, E ; Schmidt, DF ; English, DR ; Hopper, JL ; Pedersen, J ; Severi, G ; MacInnis, RJ ; Milne, RL ; Giles, GG ; Southey, MC (WILEY, 2018-09-15)
    BACKGROUND: DNA methylation can mimic the effects of germline mutations in cancer predisposition genes. Recently, we identified twenty-four heritable methylation marks associated with breast cancer risk. As breast and prostate cancer share genetic risk factors, including rare, high-risk mutations (eg, in BRCA2), we hypothesized that some of these heritable methylation marks might also be associated with the risk of prostate cancer. METHODS: We studied 869 incident prostate cancers (430 aggressive and 439 non-aggressive) and 869 matched controls nested within a prospective cohort study. DNA methylation was measured in pre-diagnostic blood samples using the Illumina Infinium HM450K BeadChip. Conditional logistic regression models, adjusted for prostate cancer risk factors and blood cell composition, were used to estimate odds ratios and 95% confidence intervals for the association between the 24 methylation marks and the risk of prostate cancer. RESULTS: Five methylation marks within the VTRNA2-1 promoter region (cg06536614, cg00124993, cg26328633, cg25340688, and cg26896946), and one in the body of CLGN (cg22901919) were associated with the risk of prostate cancer. In stratified analyses, the five VTRNA2-1 marks were associated with the risk of aggressive prostate cancer. CONCLUSIONS: This work highlights a potentially important new area of investigation for prostate cancer susceptibility and adds to our knowledge about shared risk factors for breast and prostate cancer.