Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies
    Dugue, P-A ; Bassett, JK ; Joo, JE ; Jung, C-H ; Wong, EM ; Moreno-Betancur, M ; Schmidt, D ; Makalic, E ; Li, S ; Severi, G ; Hodge, AM ; Buchanan, DD ; English, DR ; Hopper, JL ; Southey, MC ; Giles, GG ; Milne, RL (WILEY, 2018-04-15)
    The association between aging and cancer is complex. Recent studies have developed measures of biological aging based on DNA methylation and called them "age acceleration." We aimed to assess the associations of age acceleration with risk of and survival from seven common cancers. Seven case-control studies of DNA methylation and colorectal, gastric, kidney, lung, prostate and urothelial cancer and B-cell lymphoma nested in the Melbourne Collaborative Cohort Study were conducted. Cancer cases, vital status and cause of death were ascertained through linkage with cancer and death registries. Conditional logistic regression and Cox models were used to estimate odds ratios (OR) and hazard ratios (HR) and 95% confidence intervals (CI) for associations of five age acceleration measures derived from the Human Methylation 450 K Beadchip assay with cancer risk (N = 3,216 cases) and survival (N = 1,726 deaths), respectively. Epigenetic aging was associated with increased cancer risk, ranging from 4% to 9% per five-year age acceleration for the 5 measures considered. Heterogeneity by study was observed, with stronger associations for risk of kidney cancer and B-cell lymphoma. An associated increased risk of death following cancer diagnosis ranged from 2% to 6% per five-year age acceleration, with no evidence of heterogeneity by cancer site. Cancer risk and mortality were increased by 15-30% for the fourth versus first quartile of age acceleration. DNA methylation-based measures of biological aging are associated with increased cancer risk and shorter cancer survival, independently of major health risk factors.
  • Item
    Thumbnail Image
    Genome-Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case-Control Study
    FitzGerald, LM ; Naeem, H ; Makalic, E ; Schmidt, DF ; Dowty, JG ; Joo, JE ; Jung, C-H ; Bassett, JK ; Dugue, P-A ; Chung, J ; Lonie, A ; Milne, RL ; Wong, EM ; Hopper, JL ; English, DR ; Severi, G ; Baglietto, L ; Pedersen, J ; Giles, GG ; Southey, MC (WILEY, 2017-04-01)
  • Item
    Thumbnail Image
    Heritable methylation marks associated with breast and prostate cancer risk
    Dugue, P-A ; Dowty, JG ; Joo, JE ; Wong, EM ; Makalic, E ; Schmidt, DF ; English, DR ; Hopper, JL ; Pedersen, J ; Severi, G ; MacInnis, RJ ; Milne, RL ; Giles, GG ; Southey, MC (WILEY, 2018-09-15)
    BACKGROUND: DNA methylation can mimic the effects of germline mutations in cancer predisposition genes. Recently, we identified twenty-four heritable methylation marks associated with breast cancer risk. As breast and prostate cancer share genetic risk factors, including rare, high-risk mutations (eg, in BRCA2), we hypothesized that some of these heritable methylation marks might also be associated with the risk of prostate cancer. METHODS: We studied 869 incident prostate cancers (430 aggressive and 439 non-aggressive) and 869 matched controls nested within a prospective cohort study. DNA methylation was measured in pre-diagnostic blood samples using the Illumina Infinium HM450K BeadChip. Conditional logistic regression models, adjusted for prostate cancer risk factors and blood cell composition, were used to estimate odds ratios and 95% confidence intervals for the association between the 24 methylation marks and the risk of prostate cancer. RESULTS: Five methylation marks within the VTRNA2-1 promoter region (cg06536614, cg00124993, cg26328633, cg25340688, and cg26896946), and one in the body of CLGN (cg22901919) were associated with the risk of prostate cancer. In stratified analyses, the five VTRNA2-1 marks were associated with the risk of aggressive prostate cancer. CONCLUSIONS: This work highlights a potentially important new area of investigation for prostate cancer susceptibility and adds to our knowledge about shared risk factors for breast and prostate cancer.
  • Item
    Thumbnail Image
    Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry
    Scott, CM ; Joo, JE ; O'Callaghan, N ; Buchanan, DD ; Clendenning, M ; Giles, GG ; Hopper, JL ; Wong, EM ; Southey, MC ; Toland, AE (PUBLIC LIBRARY SCIENCE, 2016-11-30)
    DNA methylation can mimic the effects of both germline and somatic mutations for cancer predisposition genes such as BRCA1 and p16INK4a. Constitutional DNA methylation of the BRCA1 promoter has been well described and is associated with an increased risk of early-onset breast cancers that have BRCA1-mutation associated histological features. The role of methylation in the context of other breast cancer predisposition genes has been less well studied and often with conflicting or ambiguous outcomes. We examined the role of methylation in known breast cancer susceptibility genes in breast cancer predisposition and tumor development. We applied the Infinium HumanMethylation450 Beadchip (HM450K) array to blood and tumor-derived DNA from 43 women diagnosed with breast cancer before the age of 40 years and measured the methylation profiles across promoter regions of BRCA1, BRCA2, ATM, PALB2, CDH1, TP53, FANCM, CHEK2, MLH1, MSH2, MSH6 and PMS2. Prior genetic testing had demonstrated that these women did not carry a germline mutation in BRCA1, ATM, CHEK2, PALB2, TP53, BRCA2, CDH1 or FANCM. In addition to the BRCA1 promoter region, this work identified regions with variable methylation at multiple breast cancer susceptibility genes including PALB2 and MLH1. Methylation at the region of MLH1 in these breast cancers was not associated with microsatellite instability. This work informs future studies of the role of methylation in breast cancer susceptibility gene silencing.
  • Item
    Thumbnail Image
    Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case-control study
    Dugue, P-A ; Brinkman, MT ; Milne, RL ; Wong, EM ; FitzGerald, LM ; Bassett, JK ; Joo, JE ; Jung, C-H ; Makalic, E ; Schmidt, DF ; Park, DJ ; Chung, J ; Ta, AD ; Bolton, DM ; Lonie, A ; Longano, A ; Hopper, JL ; Severi, G ; Saffery, R ; English, DR ; Southey, MC ; Giles, GG (SPRINGERNATURE, 2016-09)
    BACKGROUND: Global DNA methylation has been reported to be associated with urothelial cell carcinoma (UCC) by studies using blood samples collected at diagnosis. Using the Illumina HumanMethylation450 assay, we derived genome-wide measures of blood DNA methylation and assessed them for their prospective association with UCC risk. METHODS: We used 439 case-control pairs from the Melbourne Collaborative Cohort Study matched on age, sex, country of birth, DNA sample type, and collection period. Conditional logistic regression was used to compute odds ratios (OR) of UCC risk per s.d. of each genome-wide measure of DNA methylation and 95% confidence intervals (CIs), adjusted for potential confounders. We also investigated associations by disease subtype, sex, smoking, and time since blood collection. RESULTS: The risk of superficial UCC was decreased for individuals with higher levels of our genome-wide DNA methylation measure (OR=0.71, 95% CI: 0.54-0.94; P=0.02). This association was particularly strong for current smokers at sample collection (OR=0.47, 95% CI: 0.27-0.83). Intermediate levels of our genome-wide measure were associated with decreased risk of invasive UCC. Some variation was observed between UCC subtypes and the location and regulatory function of the CpGs included in the genome-wide measures of methylation. CONCLUSIONS: Higher levels of our genome-wide DNA methylation measure were associated with decreased risk of superficial UCC and intermediate levels were associated with reduced risk of invasive disease. These findings require replication by other prospective studies.
  • Item
    Thumbnail Image
    Genome-wide average DNA methylation is determined in utero
    Li, S ; Wong, EM ; Dugue, P-A ; McRae, AF ; Kim, E ; Joo, J-HE ; Nguyen, TL ; Stone, J ; Dite, GS ; Armstrong, NJ ; Mather, KA ; Thalamuthu, A ; Wright, MJ ; Ames, D ; Milne, RL ; Craig, JM ; Saffery, R ; Montgomery, GW ; Song, Y-M ; Sung, J ; Spector, TD ; Sachdev, PS ; Giles, GG ; Southey, MC ; Hopper, JL (OXFORD UNIV PRESS, 2018-06)
    BACKGROUND: Investigating the genetic and environmental causes of variation in genome-wide average DNA methylation (GWAM), a global methylation measure from the HumanMethylation450 array, might give a better understanding of genetic and environmental influences on methylation. METHODS: We measured GWAM for 2299 individuals aged 0 to 90 years from seven twin and/or family studies. We estimated familial correlations, modelled correlations with cohabitation history and fitted variance components models for GWAM. RESULTS: The correlation in GWAM for twin pairs was ∼0.8 at birth, decreased with age during adolescence and was constant at ∼0.4 throughout adulthood, with no evidence that twin pair correlations differed by zygosity. Non-twin first-degree relatives were correlated, from 0.17 [95% confidence interval (CI): 0.05-0.30] to 0.28 (95% CI: 0.08-0.48), except for middle-aged siblings (0.01, 95% CI: -0.10-0.12), and the correlation increased with time living together and decreased with time living apart. Spouse pairs were correlated in all studies, from 0.23 (95% CI: 0.3-0.43) to 0.31 (95% CI: 0.05-0.52), and the correlation increased with time living together. The variance explained by environmental factors shared by twins alone was 90% (95% CI: 74-95%) at birth, decreased in early life and plateaued at 28% (95% CI: 17-39%) in middle age and beyond. There was a cohabitation-related environmental component of variance. CONCLUSIONS: GWAM is determined in utero by prenatal environmental factors, the effects of which persist throughout life. The variation of GWAM is also influenced by environmental factors shared by family members, as well as by individual-specific environmental factors.
  • Item
    Thumbnail Image
    The utility of DNA extracted from saliva for genome-wide molecular research platforms.
    Bruinsma, FJ ; Joo, JE ; Wong, EM ; Giles, GG ; Southey, MC (Springer Science and Business Media LLC, 2018-01-08)
    OBJECTIVE: The study aimed to investigate the suitability of DNA extracted from saliva for high throughput molecular genotyping and DNA methylation platforms by comparing its performance with that of DNA extracted from blood. The genome-wide methylation profile, using the Infinium HumanMethylation450 Beadchip array® (Illumina, San Diego, CA), was measured for 20 DNA samples. Common genetic variation was measured, using the Infinium HumanCore Beadchip® (Illumina, San Diego, CA) for 4 samples (matching samples from 2 people). RESULTS: DNA from blood and saliva returned genotyping call rates and reproducibility frequencies of > 99%. High-quality DNA methylation data was obtained from both saliva and blood DNA, with average detection p-values for each sample ranging from 0.001 to 0.006. Slightly higher global DNA methylation levels were observed in whole blood DNA than saliva DNA. Correlations between individuals for each sample type were generally greater than correlations between two sample types from the same individual (Pearson's correlation, r = 0.9696 in 10 pairs of matched blood and saliva derived DNA, r = 0.9702 between saliva samples, and r = 0.9769 between blood derived DNA). Saliva yields DNA of sufficient quantity and quality to compare favourably with blood as a source of DNA for genetic and epigenetic research purposes.
  • Item
    Thumbnail Image
    Tumor mutational signatures in sebaceous skin lesions from individuals with Lynch syndrome
    Georgeson, P ; Walsh, MD ; Clendenning, M ; Daneshvar, S ; Pope, BJ ; Mahmood, K ; Joo, JE ; Jayasekara, H ; Jenkins, MA ; Winship, IM ; Buchanan, DD (WILEY, 2019-07)
    BACKGROUND: Muir-Torre syndrome is defined by the development of sebaceous skin lesions in individuals who carry a germline mismatch repair (MMR) gene mutation. Loss of expression of MMR proteins is frequently observed in sebaceous skin lesions, but MMR-deficiency alone is not diagnostic for carrying a germline MMR gene mutation. METHODS: Whole exome sequencing was performed on three MMR-deficient sebaceous lesions from individuals with MSH2 gene mutations (Lynch syndrome) and three MMR-proficient sebaceous lesions from individuals without Lynch syndrome with the aim of characterizing the tumor mutational signatures, somatic mutation burden, and microsatellite instability status. Thirty predefined somatic mutational signatures were calculated for each lesion. RESULTS: Signature 1 was ubiquitous across the six lesions tested. Signatures 6 and 15, associated with defective DNA MMR, were significantly more prevalent in the MMR-deficient lesions from the MSH2 carriers compared with the MMR-proficient non-Lynch sebaceous lesions (mean ± SD=41.0 ± 8.2% vs. 2.3 ± 4.0%, p = 0.0018). Tumor mutation burden was, on average, significantly higher in the MMR-deficient lesions compared with the MMR-proficient lesions (23.3 ± 11.4 vs. 1.8 ± 0.8 mutations/Mb, p = 0.03). All four sebaceous lesions observed in sun exposed areas of the body demonstrated signature 7 related to ultraviolet light exposure. CONCLUSION: Tumor mutational signatures 6 and 15 and somatic mutation burden were effective in differentiating Lynch-related from non-Lynch sebaceous lesions.
  • Item
    Thumbnail Image
    Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study
    Li, S ; Wong, EM ; Bui, M ; Nguyen, TL ; Joo, J-HE ; Stone, J ; Dite, GS ; Giles, GG ; Saffery, R ; Southey, MC ; Hopper, JL (BMC, 2018-02-09)
    BACKGROUND: Smoking has been reported to be associated with peripheral blood DNA methylation, but the causal aspects of the association have rarely been investigated. We aimed to investigate the association and underlying causation between smoking and blood methylation. METHODS: The methylation profile of DNA from the peripheral blood, collected as dried blood spots stored on Guthrie cards, was measured for 479 Australian women including 66 monozygotic twin pairs, 66 dizygotic twin pairs, and 215 sisters of twins from 130 twin families using the Infinium HumanMethylation450K BeadChip array. Linear regression was used to estimate associations between methylation at ~ 410,000 cytosine-guanine dinucleotides (CpGs) and smoking status. A regression-based methodology for twins, Inference about Causation through Examination of Familial Confounding (ICE FALCON), was used to assess putative causation. RESULTS: At a 5% false discovery rate, 39 CpGs located at 27 loci, including previously reported AHRR, F2RL3, 2q37.1 and 6p21.33, were found to be differentially methylated across never, former and current smokers. For all 39 CpG sites, current smokers had the lowest methylation level. Our study provides the first replication for two previously reported CpG sites, cg06226150 (SLC2A4RG) and cg21733098 (12q24.32). From the ICE FALCON analysis with smoking status as the predictor and methylation score as the outcome, a woman's methylation score was associated with her co-twin's smoking status, and the association attenuated towards the null conditioning on her own smoking status, consistent with smoking status causing changes in methylation. To the contrary, using methylation score as the predictor and smoking status as the outcome, a woman's smoking status was not associated with her co-twin's methylation score, consistent with changes in methylation not causing smoking status. CONCLUSIONS: For middle-aged women, peripheral blood DNA methylation at several genomic locations is associated with smoking. Our study suggests that smoking has a causal effect on peripheral blood DNA methylation, but not vice versa.
  • Item
    Thumbnail Image
    Heritable DNA methylation marks associated with susceptibility to breast cancer
    Joo, JE ; Dowty, JG ; Milne, RL ; Wong, EM ; Dugue, P-A ; English, D ; Hopper, JL ; Goldgar, DE ; Giles, GG ; Southey, MC (NATURE PUBLISHING GROUP, 2018-02-28)
    Mendelian-like inheritance of germline DNA methylation in cancer susceptibility genes has been previously reported. We aimed to scan the genome for heritable methylation marks associated with breast cancer susceptibility by studying 25 Australian multiple-case breast cancer families. Here we report genome-wide DNA methylation measured in 210 peripheral blood DNA samples provided by family members using the Infinium HumanMethylation450. We develop and apply a new statistical method to identify heritable methylation marks based on complex segregation analysis. We estimate carrier probabilities for the 1000 most heritable methylation marks based on family structure, and we use Cox proportional hazards survival analysis to identify 24 methylation marks with corresponding carrier probabilities significantly associated with breast cancer. We replicate an association with breast cancer risk for four of the 24 marks using an independent nested case-control study. Here, we report a novel approach for identifying heritable DNA methylation marks associated with breast cancer risk.