Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Identification of new breast cancer predisposition genes via whole exome sequencing
    Southey, MC ; Park, DJ ; Lesueur, F ; Odefrey, F ; Nguyen-Dumont, T ; Hammet, F ; Neuhausen, SL ; John, EM ; Andrulis, IL ; Chenevix-Trench, G ; Baglietto, L ; Le Calvez-Kelm, F ; Pertesi, M ; Lonie, A ; Pope, B ; Sinilnikova, O ; Tsimiklis, H ; Giles, GG ; Hopper, JL ; Tavtigian, SV ; Goldgar, DE (Springer Science and Business Media LLC, 2012-01)
  • Item
    Thumbnail Image
    Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case-control study
    Dugue, P-A ; Brinkman, MT ; Milne, RL ; Wong, EM ; FitzGerald, LM ; Bassett, JK ; Joo, JE ; Jung, C-H ; Makalic, E ; Schmidt, DF ; Park, DJ ; Chung, J ; Ta, AD ; Bolton, DM ; Lonie, A ; Longano, A ; Hopper, JL ; Severi, G ; Saffery, R ; English, DR ; Southey, MC ; Giles, GG (SPRINGERNATURE, 2016-09)
    BACKGROUND: Global DNA methylation has been reported to be associated with urothelial cell carcinoma (UCC) by studies using blood samples collected at diagnosis. Using the Illumina HumanMethylation450 assay, we derived genome-wide measures of blood DNA methylation and assessed them for their prospective association with UCC risk. METHODS: We used 439 case-control pairs from the Melbourne Collaborative Cohort Study matched on age, sex, country of birth, DNA sample type, and collection period. Conditional logistic regression was used to compute odds ratios (OR) of UCC risk per s.d. of each genome-wide measure of DNA methylation and 95% confidence intervals (CIs), adjusted for potential confounders. We also investigated associations by disease subtype, sex, smoking, and time since blood collection. RESULTS: The risk of superficial UCC was decreased for individuals with higher levels of our genome-wide DNA methylation measure (OR=0.71, 95% CI: 0.54-0.94; P=0.02). This association was particularly strong for current smokers at sample collection (OR=0.47, 95% CI: 0.27-0.83). Intermediate levels of our genome-wide measure were associated with decreased risk of invasive UCC. Some variation was observed between UCC subtypes and the location and regulatory function of the CpGs included in the genome-wide measures of methylation. CONCLUSIONS: Higher levels of our genome-wide DNA methylation measure were associated with decreased risk of superficial UCC and intermediate levels were associated with reduced risk of invasive disease. These findings require replication by other prospective studies.
  • Item
    Thumbnail Image
    Is RNASEL:p.Glu265*a modifier of early-onset breast cancer risk for carriers of high-risk mutations?
    Nguyen-Dumont, T ; Teo, ZL ; Hammet, F ; Roberge, A ; Mahmoodi, M ; Tsimiklis, H ; Park, DJ ; Pope, BJ ; Lonie, A ; Kapuscinski, MK ; Mahmood, K ; Goldgar, DE ; Giles, GG ; Winship, I ; Hopper, JL ; Southey, MC (BIOMED CENTRAL LTD, 2018-02-08)
    BACKGROUND: Breast cancer risk for BRCA1 and BRCA2 pathogenic mutation carriers is modified by risk factors that cluster in families, including genetic modifiers of risk. We considered genetic modifiers of risk for carriers of high-risk mutations in other breast cancer susceptibility genes. METHODS: In a family known to carry the high-risk mutation PALB2:c.3113G>A (p.Trp1038*), whole-exome sequencing was performed on germline DNA from four affected women, three of whom were mutation carriers. RESULTS: RNASEL:p.Glu265* was identified in one of the PALB2 carriers who had two primary invasive breast cancer diagnoses before 50 years. Gene-panel testing of BRCA1, BRCA2, PALB2 and RNASEL in the Australian Breast Cancer Family Registry identified five carriers of RNASEL:p.Glu265* in 591 early onset breast cancer cases. Three of the five women (60%) carrying RNASEL:p.Glu265* also carried a pathogenic mutation in a breast cancer susceptibility gene compared with 30 carriers of pathogenic mutations in the 586 non-carriers of RNASEL:p.Glu265* (5%) (p < 0.002). Taqman genotyping demonstrated that the allele frequency of RNASEL:p.Glu265* was similar in affected and unaffected Australian women, consistent with other populations. CONCLUSION: Our study suggests that RNASEL:p.Glu265* may be a genetic modifier of risk for early-onset breast cancer predisposition in carriers of high-risk mutations. Much larger case-case and case-control studies are warranted to test the association observed in this report.
  • Item
    Thumbnail Image
    FAVR (Filtering and Annotation of Variants that are Rare): methods to facilitate the analysis of rare germline genetic variants from massively parallel sequencing datasets
    Pope, BJ ; Tu, N-D ; Odefrey, F ; Hammet, F ; Bell, R ; Tao, K ; Tavtigian, SV ; Goldgar, DE ; Lonie, A ; Southey, MC ; Park, DJ (BIOMED CENTRAL LTD, 2013-02-25)
    BACKGROUND: Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. RESULTS: FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. CONCLUSIONS: FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes.