Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Weight is More Informative than Body Mass Index for Predicting Postmenopausal Breast Cancer Risk: Prospective Family Study Cohort (ProF-SC)
    Ye, Z ; Li, S ; Dite, GS ; Nguyen, TL ; MacInnis, RJ ; Andrulis, IL ; Buys, SS ; Daly, MB ; John, EM ; Kurian, AW ; Genkinger, JM ; Chung, WK ; Phillips, K-A ; Thorne, H ; Winship, IM ; Milne, RL ; Dugue, P-A ; Southey, MC ; Giles, GG ; Terry, MB ; Hopper, JL (AMER ASSOC CANCER RESEARCH, 2022-03)
    UNLABELLED: We considered whether weight is more informative than body mass index (BMI) = weight/height2 when predicting breast cancer risk for postmenopausal women, and if the weight association differs by underlying familial risk. We studied 6,761 women postmenopausal at baseline with a wide range of familial risk from 2,364 families in the Prospective Family Study Cohort. Participants were followed for on average 11.45 years and there were 416 incident breast cancers. We used Cox regression to estimate risk associations with log-transformed weight and BMI after adjusting for underlying familial risk. We compared model fits using the Akaike information criterion (AIC) and nested models using the likelihood ratio test. The AIC for the weight-only model was 6.22 units lower than for the BMI-only model, and the log risk gradient was 23% greater. Adding BMI or height to weight did not improve fit (ΔAIC = 0.90 and 0.83, respectively; both P = 0.3). Conversely, adding weight to BMI or height gave better fits (ΔAIC = 5.32 and 11.64; P = 0.007 and 0.0002, respectively). Adding height improved only the BMI model (ΔAIC = 5.47; P = 0.006). There was no evidence that the BMI or weight associations differed by underlying familial risk (P > 0.2). Weight is more informative than BMI for predicting breast cancer risk, consistent with nonadipose as well as adipose tissue being etiologically relevant. The independent but multiplicative associations of weight and familial risk suggest that, in terms of absolute breast cancer risk, the association with weight is more important the greater a woman's underlying familial risk. PREVENTION RELEVANCE: Our results suggest that the relationship between BMI and breast cancer could be due to a relationship between weight and breast cancer, downgraded by inappropriately adjusting for height; potential importance of anthropometric measures other than total body fat; breast cancer risk associations with BMI and weight are across a continuum.
  • Item
    Thumbnail Image
    Segregation analysis of 17,425 population-based breast cancer families: Evidence for genetic susceptibility and risk prediction
    Li, S ; MacInnis, RJ ; Lee, A ; Nguyen-Dumont, T ; Dorling, L ; Carvalho, S ; Dite, GS ; Shah, M ; Luccarini, C ; Wang, Q ; Milne, RL ; Jenkins, MA ; Giles, GG ; Dunning, AM ; Pharoah, PDP ; Southey, MC ; Easton, DF ; Hopper, JL ; Antoniou, AC (CELL PRESS, 2022-10-06)
    Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
  • Item
    No Preview Available
    Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer
    Schaid, DJ ; McDonnell, SK ; FitzGerald, LM ; DeRycke, L ; Fogarty, Z ; Giles, GG ; MacInnis, RJ ; Southey, MC ; Nguyen-Dumont, T ; Cancel-Tassin, G ; Cussenot, O ; Whittemore, AS ; Sieh, W ; Ioannidis, NM ; Hsieh, C-L ; Stanford, JL ; Schleutker, J ; Cropp, CD ; Carpten, J ; Hoegel, J ; Eeles, R ; Kote-Jarai, Z ; Ackerman, MJ ; Klein, CJ ; Mandal, D ; Cooney, KA ; Bailey-Wilson, JE ; Helfand, B ; Catalona, WJ ; Wiklund, F ; Riska, S ; Bahetti, S ; Larson, MC ; Albright, LC ; Teerlink, C ; Xu, J ; Isaacs, W ; Ostrander, EA ; Thibodeau, SN (ELSEVIER, 2021-03)
    BACKGROUND: Family history of prostate cancer (PCa) is a well-known risk factor, and both common and rare genetic variants are associated with the disease. OBJECTIVE: To detect new genetic variants associated with PCa, capitalizing on the role of family history and more aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS: A two-stage design was used. In stage one, whole-exome sequencing was used to identify potential risk alleles among affected men with a strong family history of disease or with more aggressive disease (491 cases and 429 controls). Aggressive disease was based on a sum of scores for Gleason score, node status, metastasis, tumor stage, prostate-specific antigen at diagnosis, systemic recurrence, and time to PCa death. Genes identified in stage one were screened in stage two using a custom-capture design in an independent set of 2917 cases and 1899 controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Frequencies of genetic variants (singly or jointly in a gene) were compared between cases and controls. RESULTS AND LIMITATIONS: Eleven genes previously reported to be associated with PCa were detected (ATM, BRCA2, HOXB13, FAM111A, EMSY, HNF1B, KLK3, MSMB, PCAT1, PRSS3, and TERT), as well as an additional 10 novel genes (PABPC1, QK1, FAM114A1, MUC6, MYCBP2, RAPGEF4, RNASEH2B, ULK4, XPO7, and THAP3). Of these 10 novel genes, all but PABPC1 and ULK4 were primarily associated with the risk of aggressive PCa. CONCLUSIONS: Our approach demonstrates the advantage of gene sequencing in the search for genetic variants associated with PCa and the benefits of sampling patients with a strong family history of disease or an aggressive form of disease. PATIENT SUMMARY: Multiple genes are associated with prostate cancer (PCa) among men with a strong family history of this disease or among men with an aggressive form of PCa.
  • Item
    Thumbnail Image
    Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women
    Wang, X ; Kapoor, PM ; Auer, PL ; Dennis, J ; Dunning, AM ; Wang, Q ; Lush, M ; Michailidou, K ; Bolla, MK ; Aronson, KJ ; Murphy, RA ; Brooks-Wilson, A ; Lee, DG ; Guenel, P ; Truong, T ; Mulot, C ; Teras, LR ; Patel, A ; Dossus, L ; Kaaks, R ; Hoppe, R ; Bruening, T ; Hamann, U ; Czene, K ; Gabrielson, M ; Hall, P ; Eriksson, M ; Jung, A ; Becher, H ; Couch, FJ ; Larson, NL ; Olson, JE ; Ruddy, KJ ; Giles, GG ; MacInnis, RJ ; Southey, MC ; Le Marchand, L ; Wilkens, LR ; Haiman, CA ; Olsson, H ; Augustinsson, A ; Krueger, U ; Wagner, P ; Scott, C ; Winham, SJ ; Vachon, CM ; Perou, CM ; Olshan, AF ; Troester, MA ; Hunter, DJ ; Eliassen, HA ; Tamimi, RM ; Brantley, K ; Andrulis, IL ; Figueroa, J ; Chanock, SJ ; Ahearn, TU ; Evans, GD ; Newman, WG ; VanVeen, EM ; Howell, A ; Wolk, A ; Hakansson, N ; Ziogas, A ; Jones, ME ; Orr, N ; Schoemaker, MJ ; Swerdlow, AJ ; Kitahara, CM ; Linet, M ; Prentice, RL ; Easton, DF ; Milne, RL ; Kraft, P ; Chang-Claude, J ; Lindstrom, S (NATURE PORTFOLIO, 2022-04-13)
    Use of menopausal hormone therapy (MHT) is associated with increased risk for breast cancer. However, the relevant mechanisms and its interaction with genetic variants are not fully understood. We conducted a genome-wide interaction analysis between MHT use and genetic variants for breast cancer risk in 27,585 cases and 34,785 controls from 26 observational studies. All women were post-menopausal and of European ancestry. Multivariable logistic regression models were used to test for multiplicative interactions between genetic variants and current MHT use. We considered interaction p-values < 5 × 10-8 as genome-wide significant, and p-values < 1 × 10-5 as suggestive. Linkage disequilibrium (LD)-based clumping was performed to identify independent candidate variants. None of the 9.7 million genetic variants tested for interactions with MHT use reached genome-wide significance. Only 213 variants, representing 18 independent loci, had p-values < 1 × 105. The strongest evidence was found for rs4674019 (p-value = 2.27 × 10-7), which showed genome-wide significant interaction (p-value = 3.8 × 10-8) with current MHT use when analysis was restricted to population-based studies only. Limiting the analyses to combined estrogen-progesterone MHT use only or to estrogen receptor (ER) positive cases did not identify any genome-wide significant evidence of interactions. In this large genome-wide SNP-MHT interaction study of breast cancer, we found no strong support for common genetic variants modifying the effect of MHT on breast cancer risk. These results suggest that common genetic variation has limited impact on the observed MHT-breast cancer risk association.
  • Item
    Thumbnail Image
    Common variants in breast cancer risk loci predispose to distinct tumor subtypes
    Ahearn, TU ; Zhang, H ; Michailidou, K ; Milne, RL ; Bolla, MK ; Dennis, J ; Dunning, AM ; Lush, M ; Wang, Q ; Andrulis, IL ; Anton-Culver, H ; Arndt, V ; Aronson, KJ ; Auer, PL ; Augustinsson, A ; Baten, A ; Becher, H ; Behrens, S ; Benitez, J ; Bermisheva, M ; Blomqvist, C ; Bojesen, SE ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Brenner, H ; Brooks-Wilson, A ; Bruening, T ; Burwinkel, B ; Buys, SS ; Canzian, F ; Castelao, JE ; Chang-Claude, J ; Chanock, SJ ; Chenevix-Trench, G ; Clarke, CL ; Collee, JM ; Cox, A ; Cross, SS ; Czene, K ; Daly, MB ; Devilee, P ; Dork, T ; Dwek, M ; Eccles, DM ; Evans, DG ; Fasching, PA ; Figueroa, J ; Floris, G ; Gago-Dominguez, M ; Gapstur, SM ; Garcia-Saenz, JA ; Gaudet, MM ; Giles, GG ; Goldberg, MS ; Gonzalez-Neira, A ; Alnaes, GIG ; Grip, M ; Guenel, P ; Haiman, CA ; Hall, P ; Hamann, U ; Harkness, EF ; Heemskerk-Gerritsen, BAM ; Holleczek, B ; Hollestelle, A ; Hooning, MJ ; Hoover, RN ; Hopper, JL ; Howell, A ; Jakimovska, M ; Jakubowska, A ; John, EM ; Jones, ME ; Jung, A ; Kaaks, R ; Kauppila, S ; Keeman, R ; Khusnutdinova, E ; Kitahara, CM ; Ko, Y-D ; Koutros, S ; Kristensen, VN ; Kruger, U ; Kubelka-Sabit, K ; Kurian, AW ; Kyriacou, K ; Lambrechts, D ; Lee, DG ; Lindblom, A ; Linet, M ; Lissowska, J ; Llaneza, A ; Lo, W-Y ; MacInnis, RJ ; Mannermaa, A ; Manoochehri, M ; Margolin, S ; Martinez, ME ; McLean, C ; Meindl, A ; Menon, U ; Nevanlinna, H ; Newman, WG ; Nodora, J ; Offit, K ; Olsson, H ; Orr, N ; Park-Simon, T-W ; Patel, A ; Peto, J ; Pita, G ; Plaseska-Karanfilska, D ; Prentice, R ; Punie, K ; Pylkas, K ; Radice, P ; Rennert, G ; Romero, A ; Ruediger, T ; Saloustros, E ; Sampson, S ; Sandler, DP ; Sawyer, EJ ; Schmutzler, RK ; Schoemaker, MJ ; Schottker, B ; Sherman, ME ; Shu, X-O ; Smichkoska, S ; Southey, MC ; Spinelli, JJ ; Swerdlow, AJ ; Tamimi, RM ; Tapper, WJ ; Taylor, JA ; Teras, LR ; Terry, MB ; Torres, D ; Troester, MA ; Vachon, CM ; van Deurzen, CHM ; van Veen, EM ; Wagner, P ; Weinberg, CR ; Wendt, C ; Wesseling, J ; Winqvist, R ; Wolk, A ; Yang, XR ; Zheng, W ; Couch, FJ ; Simard, J ; Kraft, P ; Easton, DF ; Pharoah, PDP ; Schmidt, MK ; Garcia-Closas, M ; Chatterjee, N (BMC, 2022-01-04)
    BACKGROUND: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
  • Item
    Thumbnail Image
    Recreational Physical Activity and Outcomes After Breast Cancer in Women at High Familial Risk
    Kehm, RD ; MacInnis, RJ ; John, EM ; Liao, Y ; Kurian, AW ; Genkinger, JM ; Knight, JA ; Colonna, S ; Chung, WK ; Milne, R ; Zeinomar, N ; Dite, GS ; Southey, MC ; Giles, GG ; Mclachlan, S-A ; Whitaker, KD ; Friedlander, ML ; Weideman, PC ; Glendon, G ; Nesci, S ; Investigators, K ; Phillips, K-A ; Andrulis, IL ; Buys, SS ; Daly, MB ; Hopper, JL ; Terry, MB (OXFORD UNIV PRESS, 2021-12)
    BACKGROUND: Recreational physical activity (RPA) is associated with improved survival after breast cancer (BC) in average-risk women, but evidence is limited for women who are at increased familial risk because of a BC family history or BRCA1 and BRCA2 pathogenic variants (BRCA1/2 PVs). METHODS: We estimated associations of RPA (self-reported average hours per week within 3 years of BC diagnosis) with all-cause mortality and second BC events (recurrence or new primary) after first invasive BC in women in the Prospective Family Study Cohort (n = 4610, diagnosed 1993-2011, aged 22-79 years at diagnosis). We fitted Cox proportional hazards regression models adjusted for age at diagnosis, demographics, and lifestyle factors. We tested for multiplicative interactions (Wald test statistic for cross-product terms) and additive interactions (relative excess risk due to interaction) by age at diagnosis, body mass index, estrogen receptor status, stage at diagnosis, BRCA1/2 PVs, and familial risk score estimated from multigenerational pedigree data. Statistical tests were 2-sided. RESULTS: We observed 1212 deaths and 473 second BC events over a median follow-up from study enrollment of 11.0 and 10.5 years, respectively. After adjusting for covariates, RPA (any vs none) was associated with lower all-cause mortality of 16.1% (95% confidence interval [CI] = 2.4% to 27.9%) overall, 11.8% (95% CI = -3.6% to 24.9%) in women without BRCA1/2 PVs, and 47.5% (95% CI = 17.4% to 66.6%) in women with BRCA1/2 PVs (RPA*BRCA1/2 multiplicative interaction P = .005; relative excess risk due to interaction = 0.87, 95% CI = 0.01 to 1.74). RPA was not associated with risk of second BC events. CONCLUSION: Findings support that RPA is associated with lower all-cause mortality in women with BC, particularly in women with BRCA1/2 PVs.
  • Item
    Thumbnail Image
    Prospective Evaluation over 15 Years of Six Breast Cancer Risk Models
    Li, SX ; Milne, RL ; Nguyen-Dumont, T ; English, DR ; Giles, GG ; Southey, MC ; Antoniou, AC ; Lee, A ; Winship, I ; Hopper, JL ; Terry, MB ; MacInnis, RJ (MDPI, 2021-10)
    Prospective validation of risk models is needed to assess their clinical utility, particularly over the longer term. We evaluated the performance of six commonly used breast cancer risk models (IBIS, BOADICEA, BRCAPRO, BRCAPRO-BCRAT, BCRAT, and iCARE-lit). 15-year risk scores were estimated using lifestyle factors and family history measures from 7608 women in the Melbourne Collaborative Cohort Study who were aged 50-65 years and unaffected at commencement of follow-up two (conducted in 2003-2007), of whom 351 subsequently developed breast cancer. Risk discrimination was assessed using the C-statistic and calibration using the expected/observed number of incident cases across the spectrum of risk by age group (50-54, 55-59, 60-65 years) and family history of breast cancer. C-statistics were higher for BOADICEA (0.59, 95% confidence interval (CI) 0.56-0.62) and IBIS (0.57, 95% CI 0.54-0.61) than the other models (p-difference ≤ 0.04). No model except BOADICEA calibrated well across the spectrum of 15-year risk (p-value < 0.03). The performance of BOADICEA and IBIS was similar across age groups and for women with or without a family history. For middle-aged Australian women, BOADICEA and IBIS had the highest discriminatory accuracy of the six risk models, but apart from BOADICEA, no model was well-calibrated across the risk spectrum.
  • Item
    Thumbnail Image
    Repeatability of methylation measures using a QIAseq targeted methyl panel and comparison with the Illumina HumanMethylation450 assay
    Yu, C ; Dugue, P-A ; Dowty, JG ; Hammet, F ; Joo, JE ; Wong, EM ; Hosseinpour, M ; Giles, GG ; Hopper, JL ; Tu, N-D ; MacInnis, RJ ; Southey, MC (SPRINGERNATURE, 2021-10-24)
    OBJECTIVE: In previous studies using Illumina Infinium methylation arrays, we have identified DNA methylation marks associated with cancer predisposition and progression. In the present study, we have sought to find appropriate technology to both technically validate our data and expand our understanding of DNA methylation in these genomic regions. Here, we aimed to assess the repeatability of methylation measures made using QIAseq targeted methyl panel and to compare them with those obtained from the Illumina HumanMethylation450 (HM450K) assay. We included in the analysis high molecular weight DNA extracted from whole blood (WB) and DNA extracted from formalin-fixed paraffin-embedded tissues (FFPE). RESULTS: The repeatability of QIAseq-methylation measures was assessed at 40 CpGs, using the Intraclass Correlation Coefficient (ICC). The mean ICCs and 95% confidence intervals (CI) were 0.72 (0.62-0.81), 0.59 (0.47-0.71) and 0.80 (0.73-0.88) for WB, FFPE and both sample types combined, respectively. For technical replicates measured using QIAseq and HM450K, the mean ICCs (95% CI) were 0.53 (0.39-0.68), 0.43 (0.31-0.56) and 0.70 (0.59-0.80), respectively. Bland-Altman plots indicated good agreement between QIAseq and HM450K measurements. These results demonstrate that the QIAseq targeted methyl panel produces reliable and reproducible methylation measurements across the 40 CpGs that were examined.
  • Item
    No Preview Available
    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
    Conti, D ; Darst, BF ; Moss, LC ; Saunders, EJ ; Sheng, X ; Chou, A ; Schumacher, FR ; Al Olama, AA ; Benlloch, S ; Dadaev, T ; Brook, MN ; Sahimi, A ; Hoffmann, TJ ; Takahashi, A ; Matsuda, K ; Momozawa, Y ; Fujita, M ; Muir, K ; Lophatananon, A ; Wan, P ; Le Marchand, L ; Wilkens, LR ; Stevens, VL ; Gapstur, SM ; Carter, BD ; Schleutker, J ; Tammela, TLJ ; Sipeky, C ; Auvinen, A ; Giles, GG ; Southey, MC ; MacInnis, RJ ; Cybulski, C ; Wokolorczyk, D ; Lubinski, J ; Neal, DE ; Donovan, JL ; Hamdy, FC ; Martin, RM ; Nordestgaard, BG ; Nielsen, SF ; Weischer, M ; Bojesen, SE ; Roder, MA ; Iversen, P ; Batra, J ; Chambers, S ; Moya, L ; Horvath, L ; Clements, JA ; Tilley, W ; Risbridger, GP ; Gronberg, H ; Aly, M ; Szulkin, R ; Eklund, M ; Nordstrom, T ; Pashayan, N ; Dunning, AM ; Ghoussaini, M ; Travis, RC ; Key, TJ ; Riboli, E ; Park, JY ; Sellers, TA ; Lin, H-Y ; Albanes, D ; Weinstein, SJ ; Mucci, LA ; Giovannucci, E ; Lindstrom, S ; Kraft, P ; Hunter, DJ ; Penney, KL ; Turman, C ; Tangen, CM ; Goodman, PJ ; Thompson, IM ; Hamilton, RJ ; Fleshner, NE ; Finelli, A ; Parent, M-E ; Stanford, JL ; Ostrander, EA ; Geybels, MS ; Koutros, S ; Freeman, LEB ; Stampfer, M ; Wolk, A ; Hakansson, N ; Andriole, GL ; Hoover, RN ; Machiela, MJ ; Sorensen, KD ; Borre, M ; Blot, WJ ; Zheng, W ; Yeboah, ED ; Mensah, JE ; Lu, Y-J ; Zhang, H-W ; Feng, N ; Mao, X ; Wu, Y ; Zhao, S-C ; Sun, Z ; Thibodeau, SN ; McDonnell, SK ; Schaid, DJ ; West, CML ; Burnet, N ; Barnett, G ; Maier, C ; Schnoeller, T ; Luedeke, M ; Kibel, AS ; Drake, BF ; Cussenot, O ; Cancel-Tassin, G ; Menegaux, F ; Truong, T ; Koudou, YA ; John, EM ; Grindedal, EM ; Maehle, L ; Khaw, K-T ; Ingles, SA ; Stern, MC ; Vega, A ; Gomez-Caamano, A ; Fachal, L ; Rosenstein, BS ; Kerns, SL ; Ostrer, H ; Teixeira, MR ; Paulo, P ; Brandao, A ; Watya, S ; Lubwama, A ; Bensen, JT ; Fontham, ETH ; Mohler, J ; Taylor, JA ; Kogevinas, M ; Llorca, J ; Castano-Vinyals, G ; Cannon-Albright, L ; Teerlink, CC ; Huff, CD ; Strom, SS ; Multigner, L ; Blanchet, P ; Brureau, L ; Kaneva, R ; Slavov, C ; Mitev, V ; Leach, RJ ; Weaver, B ; Brenner, H ; Cuk, K ; Holleczek, B ; Saum, K-U ; Klein, EA ; Hsing, AW ; Kittles, RA ; Murphy, AB ; Logothetis, CJ ; Kim, J ; Neuhausen, SL ; Steele, L ; Ding, YC ; Isaacs, WB ; Nemesure, B ; Hennis, AJM ; Carpten, J ; Pandha, H ; Michael, A ; De Ruyck, K ; De Meerleer, G ; Ost, P ; Xu, J ; Razack, A ; Lim, J ; Teo, S-H ; Newcomb, LF ; Lin, DW ; Fowke, JH ; Neslund-Dudas, C ; Rybicki, BA ; Gamulin, M ; Lessel, D ; Kulis, T ; Usmani, N ; Singhal, S ; Parliament, M ; Claessens, F ; Joniau, S ; Van den Broeck, T ; Gago-Dominguez, M ; Castelao, JE ; Martinez, ME ; Larkin, S ; Townsend, PA ; Aukim-Hastie, C ; Bush, WS ; Aldrich, MC ; Crawford, DC ; Srivastava, S ; Cullen, JC ; Petrovics, G ; Casey, G ; Roobol, MJ ; Jenster, G ; van Schaik, RHN ; Hu, JJ ; Sanderson, M ; Varma, R ; McKean-Cowdin, R ; Torres, M ; Mancuso, N ; Berndt, S ; Van den Eeden, SK ; Easton, DF ; Chanock, SJ ; Cook, MB ; Wiklund, F ; Nakagawa, H ; Witte, JS ; Eeles, RA ; Kote-Jarai, Z ; Haiman, CA (NATURE PORTFOLIO, 2021-01)
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
  • Item
    Thumbnail Image
    Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study
    Karlsson, Q ; Brook, MN ; Dadaev, T ; Wakerell, S ; Saunders, EJ ; Muir, K ; Neal, DE ; Giles, GG ; MacInnis, RJ ; Thibodeau, SN ; McDonnell, SK ; Cannon-Albright, L ; Teixeira, MR ; Paulo, P ; Cardoso, M ; Huff, C ; Li, D ; Yao, Y ; Scheet, P ; Permuth, JB ; Stanford, JL ; Dai, JY ; Ostrander, EA ; Cussenot, O ; Cancel-Tassin, G ; Hoegel, J ; Herkommer, K ; Schleutker, J ; Tammela, TLJ ; Rathinakannan, V ; Sipeky, C ; Wiklund, F ; Gronberg, H ; Aly, M ; Isaacs, WB ; Dickinson, JL ; FitzGerald, LM ; Chua, MLK ; Nguyen-Dumont, T ; Consortium, P ; Schaid, DJ ; Southey, MC ; Eeles, RA ; Kote-Jarai, Z (ELSEVIER, 2021-08)
    BACKGROUND: Germline ATM mutations are suggested to contribute to predisposition to prostate cancer (PrCa). Previous studies have had inadequate power to estimate variant effect sizes. OBJECTIVE: To precisely estimate the contribution of germline ATM mutations to PrCa risk. DESIGN, SETTING, AND PARTICIPANTS: We analysed next-generation sequencing data from 13 PRACTICAL study groups comprising 5560 cases and 3353 controls of European ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Variant Call Format files were harmonised, annotated for rare ATM variants, and classified as tier 1 (likely pathogenic) or tier 2 (potentially deleterious). Associations with overall PrCa risk and clinical subtypes were estimated. RESULTS AND LIMITATIONS: PrCa risk was higher in carriers of a tier 1 germline ATM variant, with an overall odds ratio (OR) of 4.4 (95% confidence interval [CI]: 2.0-9.5). There was also evidence that PrCa cases with younger age at diagnosis (<65 yr) had elevated tier 1 variant frequencies (pdifference = 0.04). Tier 2 variants were also associated with PrCa risk, with an OR of 1.4 (95% CI: 1.1-1.7). CONCLUSIONS: Carriers of pathogenic ATM variants have an elevated risk of developing PrCa and are at an increased risk for earlier-onset disease presentation. These results provide information for counselling of men and their families. PATIENT SUMMARY: In this study, we estimated that men who inherit a likely pathogenic mutation in the ATM gene had an approximately a fourfold risk of developing prostate cancer. In addition, they are likely to develop the disease earlier.