Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 51
  • Item
    Thumbnail Image
    Identification of new breast cancer predisposition genes via whole exome sequencing
    Southey, MC ; Park, DJ ; Lesueur, F ; Odefrey, F ; Nguyen-Dumont, T ; Hammet, F ; Neuhausen, SL ; John, EM ; Andrulis, IL ; Chenevix-Trench, G ; Baglietto, L ; Le Calvez-Kelm, F ; Pertesi, M ; Lonie, A ; Pope, B ; Sinilnikova, O ; Tsimiklis, H ; Giles, GG ; Hopper, JL ; Tavtigian, SV ; Goldgar, DE (Springer Science and Business Media LLC, 2012-01)
  • Item
    Thumbnail Image
    Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript
    Kote-Jarai, Z ; Al Olama, AA ; Leongamornlert, D ; Tymrakiewicz, M ; Saunders, E ; Guy, M ; Giles, GG ; Severi, G ; Southey, M ; Hopper, JL ; Sit, KC ; Harris, JM ; Batra, J ; Spurdle, AB ; Clements, JA ; Hamdy, F ; Neal, D ; Donovan, J ; Muir, K ; Pharoah, PDP ; Chanock, SJ ; Brown, N ; Benlloch, S ; Castro, E ; Mahmud, N ; O'Brien, L ; Hall, A ; Sawyer, E ; Wilkinson, R ; Easton, DF ; Eeles, RA (SPRINGER, 2011-06)
    Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10(-22)). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10(-34)). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.
  • Item
    No Preview Available
    Meta-Analysis Combining New and Existing Data Sets Confirms that the TERT-CLPTM1L Locus Influences Melanoma Risk
    Law, MH ; Montgomery, GW ; Brown, KM ; Martin, NG ; Mann, GJ ; Hayward, NK ; MacGregor, S (NATURE PUBLISHING GROUP, 2012-02)
  • Item
    No Preview Available
    Detectable clonal mosaicism and its relationship to aging and cancer
    Jacobs, KB ; Yeager, M ; Zhou, W ; Wacholder, S ; Wang, Z ; Rodriguez-Santiago, B ; Hutchinson, A ; Deng, X ; Liu, C ; Horner, M-J ; Cullen, M ; Epstein, CG ; Burdett, L ; Dean, MC ; Chatterjee, N ; Sampson, J ; Chung, CC ; Kovaks, J ; Gapstur, SM ; Stevens, VL ; Teras, LT ; Gaudet, MM ; Albanes, D ; Weinstein, SJ ; Virtamo, J ; Taylor, PR ; Freedman, ND ; Abnet, CC ; Goldstein, AM ; Hu, N ; Yu, K ; Yuan, J-M ; Liao, L ; Ding, T ; Qiao, Y-L ; Gao, Y-T ; Koh, W-P ; Xiang, Y-B ; Tang, Z-Z ; Fan, J-H ; Aldrich, MC ; Amos, C ; Blot, WJ ; Bock, CH ; Gillanders, EM ; Harris, CC ; Haiman, CA ; Henderson, BE ; Kolonel, LN ; Le Marchand, L ; McNeill, LH ; Rybicki, BA ; Schwartz, AG ; Signorello, LB ; Spitz, MR ; Wiencke, JK ; Wrensch, M ; Wu, X ; Zanetti, KA ; Ziegler, RG ; Figueroa, JD ; Garcia-Closas, M ; Malats, N ; Marenne, G ; Prokunina-Olsson, L ; Baris, D ; Schwenn, M ; Johnson, A ; Landi, MT ; Goldin, L ; Consonni, D ; Bertazzi, PA ; Rotunno, M ; Rajaraman, P ; Andersson, U ; Freeman, LEB ; Berg, CD ; Buring, JE ; Butler, MA ; Carreon, T ; Feychting, M ; Ahlbom, A ; Gaziano, JM ; Giles, GG ; Hallmans, G ; Hankinson, SE ; Hartge, P ; Henriksson, R ; Inskip, PD ; Johansen, C ; Landgren, A ; McKean-Cowdin, R ; Michaud, DS ; Melin, BS ; Peters, U ; Ruder, AM ; Sesso, HD ; Severi, G ; Shu, X-O ; Visvanathan, K ; White, E ; Wolk, A ; Zeleniuch-Jacquotte, A ; Zheng, W ; Silverman, DT ; Kogevinas, M ; Gonzalez, JR ; Villa, O ; Li, D ; Duell, EJ ; Risch, HA ; Olson, SH ; Kooperberg, C ; Wolpin, BM ; Jiao, L ; Hassan, M ; Wheeler, W ; Arslan, AA ; Bueno-de-Mesquita, HB ; Fuchs, CS ; Gallinger, S ; Gross, MD ; Holly, EA ; Klein, AP ; LaCroix, A ; Mandelson, MT ; Petersen, G ; Boutron-Ruault, M-C ; Bracci, PM ; Canzian, F ; Chang, K ; Cotterchio, M ; Giovannucci, EL ; Goggins, M ; Bolton, JAH ; Jenab, M ; Khaw, K-T ; Krogh, V ; Kurtz, RC ; McWilliams, RR ; Mendelsohn, JB ; Rabe, KG ; Riboli, E ; Tjonneland, A ; Tobias, GS ; Trichopoulos, D ; Elena, JW ; Yu, H ; Amundadottir, L ; Stolzenberg-Solomon, RZ ; Kraft, P ; Schumacher, F ; Stram, D ; Savage, SA ; Mirabello, L ; Andrulis, IL ; Wunder, JS ; Patino Garcia, A ; Sierrasesumaga, L ; Barkauskas, DA ; Gorlick, RG ; Purdue, M ; Chow, W-H ; Moore, LE ; Schwartz, KL ; Davis, FG ; Hsing, AW ; Berndt, SI ; Black, A ; Wentzensen, N ; Brinton, LA ; Lissowska, J ; Peplonska, B ; McGlynn, KA ; Cook, MB ; Graubard, BI ; Kratz, CP ; Greene, MH ; Erickson, RL ; Hunter, DJ ; Thomas, G ; Hoover, RN ; Real, FX ; Fraumeni, JF ; Caporaso, NE ; Tucker, M ; Rothman, N ; Perez-Jurado, LA ; Chanock, SJ (NATURE PUBLISHING GROUP, 2012-06)
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
  • Item
    No Preview Available
    Genome-wide association analysis identifies three new breast cancer susceptibility loci
    Ghoussaini, M ; Fletcher, O ; Michailidou, K ; Turnbull, C ; Schmidt, MK ; Dicks, E ; Dennis, J ; Wang, Q ; Humphreys, MK ; Luccarini, C ; Baynes, C ; Conroy, D ; Maranian, M ; Ahmed, S ; Driver, K ; Johnson, N ; Orr, N ; Silva, IDS ; Waisfisz, Q ; Meijers-Heijboer, H ; Uitterlinden, AG ; Rivadeneira, F ; Hall, P ; Czene, K ; Irwanto, A ; Liu, J ; Nevanlinna, H ; Aittomaki, K ; Blomqvist, C ; Meindl, A ; Schmutzler, RK ; Mueller-Myhsok, B ; Lichtner, P ; Chang-Claude, J ; Hein, R ; Nickels, S ; Flesch-Janys, D ; Tsimiklis, H ; Makalic, E ; Schmidt, D ; Bui, M ; Hopper, JL ; Apicella, C ; Park, DJ ; Southey, M ; Hunter, DJ ; Chanock, SJ ; Broeks, A ; Verhoef, S ; Hogervorst, FBL ; Fasching, PA ; Lux, MP ; Beckmann, MW ; Ekici, AB ; Sawyer, E ; Tomlinson, I ; Kerin, M ; Marme, F ; Schneeweiss, A ; Sohn, C ; Burwinkel, B ; Guenel, P ; Truong, T ; Cordina-Duverger, E ; Menegaux, F ; Bojesen, SE ; Nordestgaard, BG ; Nielsen, SF ; Flyger, H ; Milne, RL ; Rosario Alonso, M ; Gonzalez-Neira, A ; Benitez, J ; Anton-Culver, H ; Ziogas, A ; Bernstein, L ; Dur, CC ; Brenner, H ; Mueller, H ; Arndt, V ; Stegmaier, C ; Justenhoven, C ; Brauch, H ; Bruening, T ; Wang-Gohrke, S ; Eilber, U ; Doerk, T ; Schuermann, P ; Bremer, M ; Hillemanns, P ; Bogdanova, NV ; Antonenkova, NN ; Rogov, YI ; Karstens, JH ; Bermisheva, M ; Prokofieva, D ; Khusnutdinova, E ; Lindblom, A ; Margolin, S ; Mannermaa, A ; Kataja, V ; Kosma, V-M ; Hartikainen, JM ; Lambrechts, D ; Yesilyurt, BT ; Floris, G ; Leunen, K ; Manoukian, S ; Bonanni, B ; Fortuzzi, S ; Peterlongo, P ; Couch, FJ ; Wang, X ; Stevens, K ; Lee, A ; Giles, GG ; Baglietto, L ; Severi, G ; McLean, C ; Alnaes, GG ; Kristensen, V ; Borrensen-Dale, A-L ; John, EM ; Miron, A ; Winqvist, R ; Pylkas, K ; Jukkola-Vuorinen, A ; Kauppila, S ; Andrulis, IL ; Glendon, G ; Mulligan, AM ; Devilee, P ; van Asperen, CJ ; Tollenaar, RAEM ; Seynaeve, C ; Figueroa, JD ; Garcia-Closas, M ; Brinton, L ; Lissowska, J ; Hooning, MJ ; Hollestelle, A ; Oldenburg, RA ; van den Ouweland, AMW ; Cox, A ; Reed, MWR ; Shah, M ; Jakubowska, A ; Lubinski, J ; Jaworska, K ; Durda, K ; Jones, M ; Schoemaker, M ; Ashworth, A ; Swerdlow, A ; Beesley, J ; Chen, X ; Muir, KR ; Lophatananon, A ; Rattanamongkongul, S ; Chaiwerawattana, A ; Kang, D ; Yoo, K-Y ; Noh, D-Y ; Shen, C-Y ; Yu, J-C ; Wu, P-E ; Hsiung, C-N ; Perkins, A ; Swann, R ; Velentzis, L ; Eccles, DM ; Tapper, WJ ; Gerty, SM ; Graham, NJ ; Ponder, BAJ ; Chenevix-Trench, G ; Pharoah, PDP ; Lathrop, M ; Dunning, AM ; Rahman, N ; Peto, J ; Easton, DF (NATURE PUBLISHING GROUP, 2012-03)
    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.
  • Item
    Thumbnail Image
    Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk
    Stevens, KN ; Garcia-Closas, M ; Fredericksen, Z ; Kosel, M ; Pankratz, VS ; Hopper, JL ; Dite, GS ; Apicella, C ; Southey, MC ; Schmidt, MK ; Broeks, A ; Van 't Veer, LJ ; Tollenaar, RAEM ; Fasching, PA ; Beckmann, MW ; Hein, A ; Ekici, AB ; Johnson, N ; Peto, J ; Silva, IDS ; Gibson, L ; Sawyer, E ; Tomlinson, I ; Kerin, MJ ; Chanock, S ; Lissowska, J ; Hunter, DJ ; Hoover, RN ; Thomas, GD ; Milne, RL ; Perez, JIA ; Gonzalez-Neira, A ; Benitez, J ; Burwinkel, B ; Meindl, A ; Schmutzler, RK ; Bartrar, CR ; Hamann, U ; Ko, YD ; Bruening, T ; Chang-Claude, J ; Hein, R ; Wang-Gohrke, S ; Doerk, T ; Schuermann, P ; Bremer, M ; Hillemanns, P ; Bogdanova, N ; Zalutsky, JV ; Rogov, YI ; Antonenkova, N ; Lindblom, A ; Margolin, S ; Mannermaa, A ; Kataja, V ; Kosma, V-M ; Hartikainen, J ; Chenevix-Trench, G ; Chen, X ; Peterlongo, P ; Bonanni, B ; Bernard, L ; Manoukian, S ; Wang, X ; Cerhan, J ; Vachon, CM ; Olson, J ; Giles, GG ; Baglietto, L ; McLean, CA ; Severi, G ; John, EM ; Miron, A ; Winqvist, R ; Pylkaes, K ; Jukkola-Vuorinen, A ; Grip, M ; Andrulis, I ; Knight, JA ; Glendon, G ; Mulligan, AM ; Cox, A ; Brock, IW ; Elliott, G ; Cross, SS ; Pharoah, PP ; Dunning, AM ; Pooley, KA ; Humphreys, MK ; Wang, J ; Kang, D ; Yoo, K-Y ; Noh, D-Y ; Sangrajrang, S ; Gabrieau, V ; Brennan, P ; Mckay, J ; Anton-Culver, H ; Ziogas, A ; Couch, FJ ; Easton, DF (NATURE PUBLISHING GROUP, 2011-12-06)
    BACKGROUND: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. METHODS: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). RESULTS: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95-0.99, P=4.6 × 10(-3)), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96-1.01, P=0.139). CONCLUSION: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer.
  • Item
    No Preview Available
    Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3
    MacGregor, S ; Montgomery, GW ; Liu, JZ ; Zhao, ZZ ; Henders, AK ; Stark, M ; Schmid, H ; Holland, EA ; Duffy, DL ; Zhang, M ; Painter, JN ; Nyholt, DR ; Maskiell, JA ; Jetann, J ; Ferguson, M ; Cust, AE ; Jenkins, MA ; Whiteman, DC ; Olsson, H ; Puig, S ; Bianchi-Scarra, G ; Hansson, J ; Demenais, F ; Landi, MT ; Debniak, T ; Mackie, R ; Azizi, E ; Bressac-de Paillerets, B ; Goldstein, AM ; Kanetsky, PA ; Gruis, NA ; Elder, DE ; Newton-Bishop, JA ; Bishop, DT ; Iles, MM ; Helsing, P ; Amos, CI ; Wei, Q ; Wang, L-E ; Lee, JE ; Qureshi, AA ; Kefford, RF ; Giles, GG ; Armstrong, BK ; Aitken, JF ; Han, J ; Hopper, JL ; Trent, JM ; Brown, KM ; Martin, NG ; Mann, GJ ; Hayward, NK (NATURE PUBLISHING GROUP, 2011-11)
    We performed a genome-wide association study of melanoma in a discovery cohort of 2,168 Australian individuals with melanoma and 4,387 control individuals. In this discovery phase, we confirm several previously characterized melanoma-associated loci at MC1R, ASIP and MTAP-CDKN2A. We selected variants at nine loci for replication in three independent case-control studies (Europe: 2,804 subjects with melanoma, 7,618 control subjects; United States 1: 1,804 subjects with melanoma, 1,026 control subjects; United States 2: 585 subjects with melanoma, 6,500 control subjects). The combined meta-analysis of all case-control studies identified a new susceptibility locus at 1q21.3 (rs7412746, P = 9.0 × 10(-11), OR in combined replication cohorts of 0.89 (95% CI 0.85-0.95)). We also show evidence suggesting that melanoma associates with 1q42.12 (rs3219090, P = 9.3 × 10(-8)). The associated variants at the 1q21.3 locus span a region with ten genes, and plausible candidate genes for melanoma susceptibility include ARNT and SETDB1. Variants at the 1q21.3 locus do not seem to be associated with human pigmentation or measures of nevus density.
  • Item
    Thumbnail Image
    Second to fourth digit ratio (2D: 4D) and prostate cancer risk in the Melbourne Collaborative Cohort Study
    Muller, DC ; Giles, GG ; Manning, JT ; Hopper, JL ; English, DR ; Severi, G (NATURE PUBLISHING GROUP, 2011-07-26)
    BACKGROUND: The ratio of the lengths of index and ring fingers (2D:4D) is a marker of prenatal exposure to sex hormones, with low 2D:4D being indicative of high prenatal androgen action. Recent studies have reported a strong association between 2D:4D and risk of prostate cancer. METHODS: A total of 6258 men participating in the Melbourne Collaborative Cohort Study had 2D:4D assessed. Of these men, we identified 686 incident prostate cancer cases. Hazard ratios (HRs) and confidence intervals (CIs) were estimated for a standard deviation increase in 2D:4D. RESULTS: No association was observed between 2D:4D and prostate cancer risk overall (HRs 1.00; 95% CIs, 0.92-1.08 for right, 0.93-1.08 for left). We observed a weak inverse association between 2D:4D and risk of prostate cancer for age <60, however 95% CIs included unity for all observed ages. CONCLUSION: Our results are not consistent with an association between 2D:4D and overall prostate cancer risk, but we cannot exclude a weak inverse association between 2D:4D and early onset prostate cancer risk.
  • Item
    Thumbnail Image
    Dietary patterns and risk of breast cancer
    Baglietto, L ; Krishnan, K ; Severi, G ; Hodge, A ; Brinkman, M ; English, DR ; McLean, C ; Hopper, JL ; Giles, GG (SPRINGERNATURE, 2011-02-01)
    BACKGROUND: Evidence is emerging that prudent/healthy dietary patterns might be associated with a reduced risk of breast cancer. METHODS: Using data from the prospective Melbourne Collaborative Cohort Study, we applied principal factor analysis to 124 foods and beverages to identify dietary patterns and estimated their association with breast cancer risk overall and by tumour characteristics using Cox regression. RESULTS: During an average of 14.1 years of follow-up of 20 967 women participants, 815 invasive breast cancers were diagnosed. Among the four dietary factors that we identified, only that characterised by high consumption of fruit and salad was associated with a reduced risk, with stronger associations observed for tumours not expressing oestrogen (ER) and progesterone receptors (PR). Compared with women in the lowest quintile of the factor score, the hazard ratio for women in the highest quintile was 0.92 (95% confidence interval (CI)=0.70-1.21; test for trend, P=0.5) for ER-positive or PR-positive tumours and 0.48 (95% CI=0.26-0.86; test for trend, P=0.002) for ER-negative and PR-negative tumours (test for homogeneity, P=0.01). CONCLUSION: Our study provides additional support for the hypothesis that a dietary pattern rich in fruit and salad might protect against invasive breast cancer and that the effect might be stronger for ER- and PR-negative tumours.
  • Item
    No Preview Available
    Characterizing Associations and SNP-Environment Interactions for GWAS-Identified Prostate Cancer Risk Markers-Results from BPC3
    Lindstrom, S ; Schumacher, F ; Siddiq, A ; Travis, RC ; Campa, D ; Berndt, SI ; Diver, WR ; Severi, G ; Allen, N ; Andriole, G ; Bueno-de-Mesquita, B ; Chanock, SJ ; Crawford, D ; Gaziano, JM ; Giles, GG ; Giovannucci, E ; Guo, C ; Haiman, CA ; Hayes, RB ; Halkjaer, J ; Hunter, DJ ; Johansson, M ; Kaaks, R ; Kolonel, LN ; Navarro, C ; Riboli, E ; Sacerdote, C ; Stampfer, M ; Stram, DO ; Thun, MJ ; Trichopoulos, D ; Virtamo, J ; Weinstein, SJ ; Yeager, M ; Henderson, B ; Ma, J ; Le Marchand, L ; Albanes, D ; Kraft, P ; Dubé, M-P (PUBLIC LIBRARY SCIENCE, 2011-02-24)
    Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10⁻²⁸). Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade < 8) tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.