Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Intratumoral presence of the genotoxic gut bacteria pks+ E. coli, Enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum and their association with clinicopathological and molecular features of colorectal cancer
    Joo, JE ; Chu, YL ; Georgeson, P ; Walker, R ; Mahmood, K ; Clendenning, M ; Meyers, AL ; Como, J ; Joseland, S ; Preston, SG ; Diepenhorst, N ; Toner, J ; Ingle, DJ ; Sherry, NL ; Metz, A ; Lynch, BM ; Milne, RL ; Southey, MC ; Hopper, JL ; Win, AK ; Macrae, FA ; Winship, IM ; Rosty, C ; Jenkins, MA ; Buchanan, DD (Springer Nature, 2024)
    Background: This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). Methods: We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. Results: Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). Conclusion: Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.
  • Item
    No Preview Available
    Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries
    Fernandez-Rozadilla, C ; Timofeeva, M ; Chen, Z ; Law, P ; Thomas, M ; Bien, S ; Diez-Obrero, V ; Li, L ; Fernandez-Tajes, J ; Palles, C ; Sherwood, K ; Harris, S ; Svinti, V ; McDonnell, K ; Farrington, S ; Studd, J ; Vaughan-Shaw, P ; Shu, X-O ; Long, J ; Cai, Q ; Guo, X ; Lu, Y ; Scacheri, P ; Studd, J ; Huyghe, J ; Harrison, T ; Shibata, D ; Haiman, C ; Devall, M ; Schumacher, F ; Melas, M ; Rennert, G ; Obon-Santacana, M ; Martin-Sanchez, V ; Moratalla-Navarro, F ; Oh, JH ; Kim, J ; Jee, SH ; Jung, KJ ; Kweon, S-S ; Shin, M-H ; Shin, A ; Ahn, Y-O ; Kim, D-H ; Oze, I ; Wen, W ; Matsuo, K ; Matsuda, K ; Tanikawa, C ; Ren, Z ; Gao, Y-T ; Jia, W-H ; Potter, J ; Jenkins, M ; Win, AK ; Pai, R ; Figueiredo, J ; Haile, R ; Gallinger, S ; Woods, M ; Newcomb, P ; Shibata, D ; Cheadle, J ; Kaplan, R ; Maughan, T ; Kerr, R ; Kerr, D ; Kirac, I ; Boehm, J ; Mecklin, L-P ; Jousilahti, P ; Knekt, P ; Aaltonen, L ; Rissanen, H ; Pukkala, E ; Eriksson, J ; Cajuso, T ; Hanninen, U ; Kondelin, J ; Palin, K ; Tanskanen, T ; Renkonen-Sinisalo, L ; Zanke, B ; Mannisto, S ; Albanes, D ; Weinstein, S ; Ruiz-Narvaez, E ; Palmer, J ; Buchanan, D ; Platz, E ; Visvanathan, K ; Ulrich, C ; Siegel, E ; Brezina, S ; Gsur, A ; Campbell, P ; Chang-Claude, J ; Hoffmeister, M ; Brenner, H ; Slattery, M ; Potter, J ; Tsilidis, K ; Schulze, M ; Gunter, M ; Murphy, N ; Castells, A ; Castellvi-Bel, S ; Moreira, L ; Arndt, V ; Shcherbina, A ; Stern, M ; Pardamean, B ; Bishop, T ; Giles, G ; Southey, M ; Idos, G ; McDonnell, K ; Abu-Ful, Z ; Greenson, J ; Shulman, K ; Lejbkowicz, F ; Offit, K ; Su, Y-R ; Steinfelder, R ; Keku, T ; van Guelpen, B ; Hudson, T ; Hampel, H ; Pearlman, R ; Berndt, S ; Hayes, R ; Martinez, ME ; Thomas, S ; Corley, D ; Pharoah, P ; Larsson, S ; Yen, Y ; Lenz, H-J ; White, E ; Li, L ; Doheny, K ; Pugh, E ; Shelford, T ; Chan, A ; Cruz-Correa, M ; Lindblom, A ; Shibata, D ; Joshi, A ; Schafmayer, C ; Scacheri, P ; Kundaje, A ; Nickerson, D ; Schoen, R ; Hampe, J ; Stadler, Z ; Vodicka, P ; Vodickova, L ; Vymetalkova, V ; Papadopoulos, N ; Edlund, C ; Gauderman, W ; Thomas, D ; Shibata, D ; Toland, A ; Markowitz, S ; Kim, A ; Gruber, S ; van Duijnhoven, F ; Feskens, E ; Sakoda, L ; Gago-Dominguez, M ; Wolk, A ; Naccarati, A ; Pardini, B ; FitzGerald, L ; Lee, SC ; Ogino, S ; Bien, S ; Kooperberg, C ; Li, C ; Lin, Y ; Prentice, R ; Qu, C ; Bezieau, S ; Tangen, C ; Mardis, E ; Yamaji, T ; Sawada, N ; Iwasaki, M ; Haiman, C ; Le Marchand, L ; Wu, A ; Qu, C ; McNeil, C ; Coetzee, G ; Hayward, C ; Deary, I ; Harris, S ; Theodoratou, E ; Reid, S ; Walker, M ; Ooi, LY ; Moreno, V ; Casey, G ; Gruber, S ; Tomlinson, I ; Zheng, W ; Dunlop, M ; Houlston, R ; Peters, U (NATURE PORTFOLIO, 2023-01)
    Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
  • Item
    Thumbnail Image
    Body mass index and molecular subtypes of colorectal cancer
    Murphy, N ; Newton, CC ; Song, M ; Papadimitriou, N ; Hoffmeister, M ; Phipps, A ; Harrison, TA ; Newcomb, PA ; Aglago, EK ; Berndt, S ; Brenner, H ; Buchanan, DD ; Cao, Y ; Chan, AT ; Chen, X ; Cheng, I ; Chang-Claude, J ; Dimou, N ; Drew, D ; Farris, AB ; French, AJ ; Gallinger, S ; Georgeson, P ; Giannakis, M ; Giles, GG ; Gruber, SB ; Harlid, S ; Hsu, L ; Huang, W-Y ; Jenkins, MA ; Laskar, RS ; Le Marchand, L ; Limburg, P ; Lin, Y ; Mandic, M ; Nowak, JA ; Obon-Santacana, M ; Ogino, S ; Qu, C ; Sakoda, LC ; Schoen, RE ; Southey, MC ; Stadler, ZK ; Steinfelder, RS ; Sun, W ; Thibodeau, SN ; Toland, AE ; Trinh, QM ; Tsilidis, KK ; Ugai, T ; Van Guelpen, B ; Wang, X ; Woods, MO ; Zaidi, SH ; Gunter, MJ ; Peters, U ; Campbell, PT (OXFORD UNIV PRESS INC, 2023-02)
    BACKGROUND: Obesity is an established risk factor for colorectal cancer (CRC), but the evidence for the association is inconsistent across molecular subtypes of the disease. METHODS: We pooled data on body mass index (BMI), tumor microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, and Jass classification types for 11 872 CRC cases and 11 013 controls from 11 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for covariables. RESULTS: Higher BMI was associated with increased CRC risk (OR per 5 kg/m2 = 1.18, 95% CI = 1.15 to 1.22). The positive association was stronger for men than women but similar across tumor subtypes defined by individual molecular markers. In analyses by Jass type, higher BMI was associated with elevated CRC risk for types 1-4 cases but not for type 5 CRC cases (considered familial-like/Lynch syndrome microsatellite instability-H, CpG island methylator phenotype-low or negative, BRAF-wild type, KRAS-wild type, OR = 1.04, 95% CI = 0.90 to 1.20). This pattern of associations for BMI and Jass types was consistent by sex and design of contributing studies (cohort or case-control). CONCLUSIONS: In contrast to previous reports with fewer study participants, we found limited evidence of heterogeneity for the association between BMI and CRC risk according to molecular subtype, suggesting that obesity influences nearly all major pathways involved in colorectal carcinogenesis. The null association observed for the Jass type 5 suggests that BMI is not a risk factor for the development of CRC for individuals with Lynch syndrome.
  • Item
    Thumbnail Image
    Colorectal cancer incidences in Lynch syndrome: a comparison of results from the prospective lynch syndrome database and the international mismatch repair consortium
    Moller, P ; Seppala, T ; Dowty, JG ; Haupt, S ; Dominguez-Valentin, M ; Sunde, L ; Bernstein, I ; Engel, C ; Aretz, S ; Nielsen, M ; Capella, G ; Evans, DG ; Burn, J ; Holinski-Feder, E ; Bertario, L ; Bonanni, B ; Lindblom, A ; Levi, Z ; Macrae, F ; Winship, I ; Plazzer, J-P ; Sijmons, R ; Laghi, L ; Della Valle, A ; Heinimann, K ; Half, E ; Lopez-Koestner, F ; Alvarez-Valenzuela, K ; Scott, RJ ; Katz, L ; Laish, I ; Vainer, E ; Vaccaro, CA ; Carraro, DM ; Gluck, N ; Abu-Freha, N ; Stakelum, A ; Kennelly, R ; Winter, D ; Rossi, BM ; Greenblatt, M ; Bohorquez, M ; Sheth, H ; Tibiletti, MG ; Lino-Silva, LS ; Horisberger, K ; Portenkirchner, C ; Nascimento, I ; Rossi, NT ; da Silva, LA ; Thomas, H ; Zarand, A ; Mecklin, J-P ; Pylvanainen, K ; Renkonen-Sinisalo, L ; Lepisto, A ; Peltomaki, P ; Therkildsen, C ; Lindberg, LJ ; Thorlacius-Ussing, O ; von Knebel Doeberitz, M ; Loeffler, M ; Rahner, N ; Steinke-Lange, V ; Schmiegel, W ; Vangala, D ; Perne, C ; Hueneburg, R ; de Vargas, AF ; Latchford, A ; Gerdes, A-M ; Backman, A-S ; Guillen-Ponce, C ; Snyder, C ; Lautrup, CK ; Amor, D ; Palmero, E ; Stoffel, E ; Duijkers, F ; Hall, MJ ; Hampel, H ; Williams, H ; Okkels, H ; Lubinski, J ; Reece, J ; Ngeow, J ; Guillem, JG ; Arnold, J ; Wadt, K ; Monahan, K ; Senter, L ; Rasmussen, LJ ; van Hest, LP ; Ricciardiello, L ; Kohonen-Corish, MRJ ; Ligtenberg, MJL ; Southey, M ; Aronson, M ; Zahary, MN ; Samadder, NJ ; Poplawski, N ; Hoogerbrugge, N ; Morrison, PJ ; James, P ; Lee, G ; Chen-Shtoyerman, R ; Ankathil, R ; Pai, R ; Ward, R ; Parry, S ; Debniak, T ; John, T ; van Overeem Hansen, T ; Caldes, T ; Yamaguchi, T ; Barca-Tierno, V ; Garre, P ; Cavestro, GM ; Weitz, J ; Redler, S ; Buettner, R ; Heuveline, V ; Hopper, JL ; Win, AK ; Lindor, N ; Gallinger, S ; Le Marchand, L ; Newcomb, PA ; Figueiredo, J ; Buchanan, DD ; Thibodeau, SN ; ten Broeke, SW ; Hovig, E ; Nakken, S ; Pineda, M ; Duenas, N ; Brunet, J ; Green, K ; Lalloo, F ; Newton, K ; Crosbie, EJ ; Mints, M ; Tjandra, D ; Neffa, F ; Esperon, P ; Kariv, R ; Rosner, G ; Pavicic, WH ; Kalfayan, P ; Torrezan, GT ; Bassaneze, T ; Martin, C ; Moslein, G ; Ahadova, A ; Kloor, M ; Sampson, JR ; Jenkins, MA (BMC, 2022-10-01)
    OBJECTIVE: To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. METHODS: CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. RESULTS: In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. CONCLUSIONS: Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so.
  • Item
    Thumbnail Image
    Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype
    Jayasekara, H ; English, DR ; Haydon, A ; Hodge, AM ; Lynch, BM ; Rosty, C ; Williamson, EJ ; Clendenning, M ; Southey, MC ; Jenkins, MA ; Room, R ; Hopper, JL ; Milne, RL ; Buchanan, DD ; Giles, GG ; MacInnis, RJ (WILEY, 2018-01-15)
    The influence of lifestyle factors on survival following a diagnosis of colorectal cancer (CRC) is not well established. We examined associations between lifestyle factors measured before diagnosis and CRC survival. The Melbourne Collaborative Cohort Study collected data on alcohol intake, cigarette smoking and physical activity, and body measurements at baseline (1990-1994) and wave 2 (2003-2007). We included participants diagnosed to 31 August 2015 with incident stages I-III CRC within 10-years post exposure assessment. Information on tumor characteristics and vital status was obtained. Tumor DNA was tested for microsatellite instability (MSI) and somatic mutations in oncogenes BRAF (V600E) and KRAS. We estimated hazard ratios (HRs) for associations between lifestyle factors and overall and CRC-specific mortality using Cox regression. Of 724 eligible CRC cases, 339 died (170 from CRC) during follow-up (average 9.0 years). Exercise (non-occupational/leisure-time) was associated with higher CRC-specific survival for stage II (HR = 0.25, 95% CI: 0.10-0.60) but not stages I/III disease (p for interaction = 0.01), and possibly for colon and KRAS wild-type tumors. Waist circumference was inversely associated with CRC-specific survival (HR = 1.25 per 10 cm increment, 95% CI: 1.08-1.44), independent of stage, anatomic site and tumor molecular status. Cigarette smoking was associated with lower overall survival, with suggestive evidence of worse survival for BRAF mutated CRC, but not with CRC-specific survival. Alcohol intake was not associated with survival. Survival did not differ by MSI status. We have identified pre-diagnostic predictors of survival following CRC that may have clinical and public health relevance.
  • Item
    Thumbnail Image
    Lifetime alcohol intake is associated with an increased risk of KRAS plus and BRAF-/KRAS- but not BRAF plus colorectal cancer
    Jayasekara, H ; MacInnis, RJ ; Williamson, EJ ; Hodge, AM ; Clendenning, M ; Rosty, C ; Walters, R ; Room, R ; Southey, MC ; Jenkins, MA ; Milne, RL ; Hopper, JL ; Giles, GG ; Buchanan, DD ; English, DR (WILEY, 2017-04)
    Ethanol in alcoholic beverages is a causative agent for colorectal cancer. Colorectal cancer is a biologically heterogeneous disease, and molecular subtypes defined by the presence of somatic mutations in BRAF and KRAS are known to exist. We examined associations between lifetime alcohol intake and molecular and anatomic subtypes of colorectal cancer. We calculated usual alcohol intake for 10-year periods from age 20 using recalled frequency and quantity of beverage-specific consumption for 38,149 participants aged 40-69 years from the Melbourne Collaborative Cohort Study. Cox regression was performed to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between lifetime alcohol intake and colorectal cancer risk. Heterogeneity in the HRs across subtypes of colorectal cancer was assessed. A positive dose-dependent association between lifetime alcohol intake and overall colorectal cancer risk (mean follow-up = 14.6 years; n = 596 colon and n = 326 rectal cancer) was observed (HR = 1.08, 95% CI: 1.04-1.12 per 10 g/day increment). The risk was greater for rectal than colon cancer (phomogeneity  = 0.02). Alcohol intake was associated with increased risks of KRAS+ (HR = 1.07, 95% CI: 1.00-1.15) and BRAF-/KRAS- (HR = 1.05, 95% CI: 1.00-1.11) but not BRAF+ tumors (HR = 0.89, 95% CI: 0.78-1.01; phomogeneity  = 0.01). Alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- tumors originating via specific molecular pathways including the traditional adenoma-carcinoma pathway but not with BRAF+ tumors originating via the serrated pathway. Therefore, limiting alcohol intake from a young age might reduce colorectal cancer originating via the traditional adenoma-carcinoma pathway.
  • Item
    Thumbnail Image
    DNA Methylation Signatures and the Contribution of Age-Associated Methylomic Drift to Carcinogenesis in Early-Onset Colorectal Cancer
    Joo, JE ; Clendenning, M ; Wong, EM ; Rosty, C ; Mahmood, K ; Georgeson, P ; Winship, IM ; Preston, SG ; Win, AK ; Dugue, P-A ; Jayasekara, H ; English, D ; Macrae, FA ; Hopper, JL ; Jenkins, MA ; Milne, RL ; Giles, GG ; Southey, MC ; Buchanan, DD (MDPI, 2021-06)
    We investigated aberrant DNA methylation (DNAm) changes and the contribution of ageing-associated methylomic drift and age acceleration to early-onset colorectal cancer (EOCRC) carcinogenesis. Genome-wide DNAm profiling using the Infinium HM450K on 97 EOCRC tumour and 54 normal colonic mucosa samples was compared with: (1) intermediate-onset CRC (IOCRC; diagnosed between 50-70 years; 343 tumour and 35 normal); and (2) late-onset CRC (LOCRC; >70 years; 318 tumour and 40 normal). CpGs associated with age-related methylation drift were identified using a public dataset of 231 normal mucosa samples from people without CRC. DNAm-age was estimated using epiTOC2. Common to all three age-of-onset groups, 88,385 (20% of all CpGs) CpGs were differentially methylated between tumour and normal mucosa. We identified 234 differentially methylated genes that were unique to the EOCRC group; 13 of these DMRs/genes were replicated in EOCRC compared with LOCRCs from TCGA. In normal mucosa from people without CRC, we identified 28,154 CpGs that undergo ageing-related DNAm drift, and of those, 65% were aberrantly methylated in EOCRC tumours. Based on the mitotic-based DNAm clock epiTOC2, we identified age acceleration in normal mucosa of people with EOCRC compared with normal mucosa from the IOCRC, LOCRC groups (p = 3.7 × 10-16) and young people without CRC (p = 5.8 × 10-6). EOCRC acquires unique DNAm alterations at 234 loci. CpGs associated with ageing-associated drift were widely affected in EOCRC without needing the decades-long accrual of DNAm drift as commonly seen in intermediate- and late-onset CRCs. Accelerated ageing in normal mucosa from people with EOCRC potentially underlies the earlier age of diagnosis in CRC carcinogenesis.
  • Item
    Thumbnail Image
    Postmenopausal Hormone Therapy and Colorectal Cancer Risk by Molecularly Defined Subtypes and Tumor Location
    Labadie, JD ; Harrison, TA ; Banbury, B ; Amtay, EL ; Bernd, S ; Brenner, H ; Buchanan, DD ; Campbell, PT ; Cao, Y ; Chan, AT ; Chang-Claude, J ; English, D ; Figueiredo, JC ; Gallinger, SJ ; Giles, GG ; Gunter, MJ ; Hoffmeister, M ; Hsu, L ; Jenkins, MA ; Lin, Y ; Milne, RL ; Moreno, V ; Murphy, N ; Ogino, S ; Phipps, A ; Sakoda, LC ; Slattery, ML ; Southey, MC ; Sun, W ; Thibodeau, SN ; Van Guelpen, B ; Zaidi, SH ; Peters, U ; Newcomb, PA (OXFORD UNIV PRESS, 2020-10)
    BACKGROUND: Postmenopausal hormone therapy (HT) is associated with a decreased colorectal cancer (CRC) risk. As CRC is a heterogeneous disease, we evaluated whether the association of HT and CRC differs across etiologically relevant, molecularly defined tumor subtypes and tumor location. METHODS: We pooled data on tumor subtypes (microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, pathway: adenoma-carcinoma, alternate, serrated), tumor location (proximal colon, distal colon, rectum), and HT use among 8220 postmenopausal women (3898 CRC cases and 4322 controls) from 8 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CIs) for the association of ever vs never HT use with each tumor subtype compared with controls. Models were adjusted for study, age, body mass index, smoking status, and CRC family history. All statistical tests were 2-sided. RESULTS: Among postmenopausal women, ever HT use was associated with a 38% reduction in overall CRC risk (OR =0.62, 95% CI = 0.56 to 0.69). This association was similar according to microsatellite instability, CpG island methylator phenotype and BRAF or KRAS status. However, the association was attenuated for tumors arising through the serrated pathway (OR = 0.81, 95% CI = 0.66 to 1.01) compared with the adenoma-carcinoma pathway (OR = 0.63, 95% CI = 0.55 to 0.73; P het =.04) and alternate pathway (OR = 0.61, 95% CI = 0.51 to 0.72). Additionally, proximal colon tumors had a weaker association (OR = 0.71, 95% CI = 0.62 to 0.80) compared with rectal (OR = 0.54, 95% CI = 0.46 to 0.63) and distal colon (OR = 0.57, 95% CI = 0.49 to 0.66; P het =.01) tumors. CONCLUSIONS: We observed a strong inverse association between HT use and overall CRC risk, which may predominantly reflect a benefit of HT use for tumors arising through the adenoma-carcinoma and alternate pathways as well as distal colon and rectal tumors.
  • Item
    No Preview Available
    Novel Common Genetic Susceptibility Loci for Colorectal Cancer
    Schmit, SL ; Edlund, CK ; Schumacher, FR ; Gong, J ; Harrison, TA ; Huyghe, JR ; Qu, C ; Melas, M ; Van den Berg, DJ ; Wang, H ; Tring, S ; Plummer, SJ ; Albanes, D ; Alonso, MH ; Amos, CI ; Anton, K ; Aragaki, AK ; Arndt, V ; Barry, EL ; Berndt, SI ; Bezieau, S ; Bien, S ; Bloomer, A ; Boehm, J ; Boutron-Ruault, M-C ; Brenner, H ; Brezina, S ; Buchanan, DD ; Butterbach, K ; Caan, BJ ; Campbell, PT ; Carlson, CS ; Castelao, JE ; Chan, AT ; Chang-Claude, J ; Chanock, SJ ; Cheng, I ; Cheng, Y-W ; Chin, LS ; Church, JM ; Church, T ; Coetzee, GA ; Cotterchio, M ; Correa, MC ; Curtis, KR ; Duggan, D ; Easton, DF ; English, D ; Feskens, EJM ; Fischer, R ; FitzGerald, LM ; Fortini, BK ; Fritsche, LG ; Fuchs, CS ; Gago-Dominguez, M ; Gala, M ; Gallinger, SJ ; Gauderman, WJ ; Giles, GG ; Giovannucci, EL ; Gogarten, SM ; Gonzalez-Villalpando, C ; Gonzalez-Villalpando, EM ; Grady, WM ; Greenson, JK ; Gsur, A ; Gunter, M ; Haiman, CA ; Hampe, J ; Harlid, S ; Harju, JF ; Hayes, RB ; Hofer, P ; Hoffmeister, M ; Hopper, JL ; Huang, S-C ; Huerta, JM ; Hudson, TJ ; Hunter, DJ ; Idos, GE ; Iwasaki, M ; Jackson, RD ; Jacobs, EJ ; Jee, SH ; Jenkins, MA ; Jia, W-H ; Jiao, S ; Joshi, AD ; Kolonel, LN ; Kono, S ; Kooperberg, C ; Krogh, V ; Kuehn, T ; Kury, S ; LaCroix, A ; Laurie, CA ; Lejbkowicz, F ; Lemire, M ; Lenz, H-J ; Levine, D ; Li, CI ; Li, L ; Lieb, W ; Lin, Y ; Lindor, NM ; Liu, Y-R ; Loupakis, F ; Lu, Y ; Luh, F ; Ma, J ; Mancao, C ; Manion, FJ ; Markowitz, SD ; Martin, V ; Matsuda, K ; Matsuo, K ; McDonnell, KJ ; McNeil, CE ; Milne, R ; Molina, AJ ; Mukherjee, B ; Murphy, N ; Newcomb, PA ; Offit, K ; Omichessan, H ; Palli, D ; Cotore, JPP ; Perez-Mayoral, J ; Pharoah, PD ; Potter, JD ; Qu, C ; Raskin, L ; Rennert, G ; Rennert, HS ; Riggs, BM ; Schafmayer, C ; Schoen, RE ; Sellers, TA ; Seminara, D ; Severi, G ; Shi, W ; Shibata, D ; Shu, X-O ; Siegel, EM ; Slattery, ML ; Southey, M ; Stadler, ZK ; Stern, MC ; Stintzing, S ; Taverna, D ; Thibodeau, SN ; Thomas, DC ; Trichopoulou, A ; Tsugane, S ; Ulrich, CM ; van Duijnhoven, FJB ; van Guelpan, B ; Vijai, J ; Virtamo, J ; Weinstein, SJ ; White, E ; Win, AK ; Wolk, A ; Woods, M ; Wu, AH ; Wu, K ; Xiang, Y-B ; Yen, Y ; Zanke, BW ; Zeng, Y-X ; Zhang, B ; Zubair, N ; Kweon, S-S ; Figueiredo, JC ; Zheng, W ; Le Marchand, L ; Lindblom, A ; Moreno, V ; Peters, U ; Casey, G ; Hsu, L ; Conti, DV ; Gruber, SB (OXFORD UNIV PRESS INC, 2019-02)
    BACKGROUND: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
  • Item
    No Preview Available
    Cumulative Burden of Colorectal Cancer Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer
    Archambault, AN ; Su, Y-R ; Jeon, J ; Thomas, M ; Lin, Y ; Conti, DV ; Win, AK ; Sakoda, LC ; Lansdorp-Vogelaar, I ; Peterse, EFP ; Zauber, AG ; Duggan, D ; Holowatyj, AN ; Huyghe, JR ; Brenner, H ; Cotterchio, M ; Bezieau, S ; Schmit, SL ; Edlund, CK ; Southey, MC ; MacInnis, RJ ; Campbell, PT ; Chang-Claude, J ; Slattery, ML ; Chan, AT ; Joshi, AD ; Song, M ; Cao, Y ; Woods, MO ; White, E ; Weinstein, SJ ; Ulrich, CM ; Hoffmeister, M ; Bien, SA ; Harrison, TA ; Hampe, J ; Li, CI ; Schafmayer, C ; Offit, K ; Pharoah, PD ; Moreno, V ; Lindblom, A ; Wolk, A ; Wu, AH ; Li, L ; Gunter, MJ ; Gsur, A ; Keku, TO ; Pearlman, R ; Bishop, DT ; Castellvi-Bel, S ; Moreira, L ; Vodicka, P ; Kampman, E ; Giles, GG ; Albanes, D ; Baron, JA ; Berndt, SI ; Brezina, S ; Buch, S ; Buchanan, DD ; Trichopoulou, A ; Severi, G ; Chirlaque, M-D ; Sanchez, M-J ; Palli, D ; Kuhn, T ; Murphy, N ; Cross, AJ ; Burnett-Hartman, AN ; Chanock, SJ ; de la Chapelle, A ; Easton, DF ; Elliott, F ; English, DR ; Feskens, EJM ; FitzGerald, LM ; Goodman, PJ ; Hopper, JL ; Hudson, TJ ; Hunter, DJ ; Jacobs, EJ ; Joshu, CE ; Kury, S ; Markowitz, SD ; Milne, RL ; Platz, EA ; Rennert, G ; Rennert, HS ; Schumacher, FR ; Sandler, RS ; Seminara, D ; Tangen, CM ; Thibodeau, SN ; Toland, AE ; van Duijnhoven, FJB ; Visvanathan, K ; Vodickova, L ; Potter, JD ; Mannisto, S ; Weigl, K ; Figueiredo, J ; Martin, V ; Larsson, SC ; Parfrey, PS ; Huang, W-Y ; Lenz, H-J ; Castelao, JE ; Gago-Dominguez, M ; Munoz-Garzon, V ; Mancao, C ; Haiman, CA ; Wilkens, LR ; Siegel, E ; Barry, E ; Younghusband, B ; Van Guelpen, B ; Harlid, S ; Zeleniuch-Jacquotte, A ; Liang, PS ; Du, M ; Casey, G ; Lindor, NM ; Le Marchand, L ; Gallinger, SJ ; Jenkins, MA ; Newcomb, PA ; Gruber, SB ; Schoen, RE ; Hampel, H ; Corley, DA ; Hsu, L ; Peters, U ; Hayes, RB (W B SAUNDERS CO-ELSEVIER INC, 2020-04)
    BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC. METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants. RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 × 10-5). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings. CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.