Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    No Preview Available
    Comparative quantification of health risks conceptual framework and methodological issues.
    Murray, CJL ; Ezzati, M ; Lopez, AD ; Rodgers, A ; Vander Hoorn, S (Springer Science and Business Media LLC, 2003-04-14)
    Reliable and comparable analysis of risks to health is key for preventing disease and injury. Causal attribution of morbidity and mortality to risk factors has traditionally been conducted in the context of methodological traditions of individual risk factors, often in a limited number of settings, restricting comparability.In this paper, we discuss the conceptual and methodological issues for quantifying the population health effects of individual or groups of risk factors in various levels of causality using knowledge from different scientific disciplines. The issues include: comparing the burden of disease due to the observed exposure distribution in a population with the burden from a hypothetical distribution or series of distributions, rather than a single reference level such as non-exposed; considering the multiple stages in the causal network of interactions among risk factor(s) and disease outcome to allow making inferences about some combinations of risk factors for which epidemiological studies have not been conducted, including the joint effects of multiple risk factors; calculating the health loss due to risk factor(s) as a time-indexed "stream" of disease burden due to a time-indexed "stream" of exposure, including consideration of discounting; and the sources of uncertainty.
  • Item
    No Preview Available
    Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000
    Shibuya, K ; Mathers, CD ; Boschi-Pinto, C ; Lopez, AD ; Murray, CJL (BMC, 2002-12-26)
    BACKGROUND: Mortality estimates alone are not sufficient to understand the true magnitude of cancer burden. We present the detailed estimates of mortality and incidence by site as the basis for the future estimation of cancer burden for the Global Burden of Disease 2000 study. METHODS: Age- and sex- specific mortality envelope for all malignancies by region was derived from the analysis of country life-tables and cause of death. We estimated the site-specific cancer mortality distributions from vital records and cancer survival model. The regional cancer mortality by site is estimated by disaggregating the regional cancer mortality envelope based on the mortality distribution. Estimated incidence-to-mortality rate ratios were used to back calculate the final cancer incidence estimates by site. RESULTS: In 2000, cancer accounted for over 7 million deaths (13% of total mortality) and there were more than 10 million new cancer cases world wide in 2000. More than 60% of cancer deaths and approximately half of new cases occurred in developing regions. Lung cancer was the most common cancers in the world, followed by cancers of stomach, liver, colon and rectum, and breast. There was a significant variations in the distribution of site-specific cancer mortality and incidence by region. CONCLUSIONS: Despite a regional variation, the most common cancers are potentially preventable. Cancer burden estimation by taking into account both mortality and morbidity is an essential step to set research priorities and policy formulation. Also it can used for setting priorities when combined with data on costs of interventions against cancers.
  • Item
    No Preview Available
    Global and regional estimates of cancer mortality and incidence by site: I. Application of regional cancer survival model to estimate cancer mortality distribution by site
    Mathers, CD ; Shibuya, K ; Boschi-Pinto, C ; Lopez, AD ; Murray, CJL (BMC, 2002-12-26)
    BACKGROUND: The Global Burden of Disease 2000 (GBD 2000) study starts from an analysis of the overall mortality envelope in order to ensure that the cause-specific estimates add to the total all cause mortality by age and sex. For regions where information on the distribution of cancer deaths is not available, a site-specific survival model was developed to estimate the distribution of cancer deaths by site. METHODS: An age-period-cohort model of cancer survival was developed based on data from the Surveillance, Epidemiology, and End Results (SEER). The model was further adjusted for the level of economic development in each region. Combined with the available incidence data, cancer death distributions were estimated and the model estimates were validated against vital registration data from regions other than the United States. RESULTS: Comparison with cancer mortality distribution from vital registration confirmed the validity of this approach. The model also yielded the cancer mortality distribution which is consistent with the estimates based on regional cancer registries. There was a significant variation in relative interval survival across regions, in particular for cancers of bladder, breast, melanoma of the skin, prostate and haematological malignancies. Moderate variations were observed among cancers of colon, rectum, and uterus. Cancers with very poor prognosis such as liver, lung, and pancreas cancers showed very small variations across the regions. CONCLUSIONS: The survival model presented here offers a new approach to the calculation of the distribution of deaths for areas where mortality data are either scarce or unavailable.
  • Item
    Thumbnail Image
    The evolution of the Global Burden of Disease framework for disease, injury and risk factor quantification: developing the evidence base for national, regional and global public health action
    Lopez, AD (BMC, 2005)
    Reliable, comparable information about the main causes of disease and injury in populations, and how these are changing, is a critical input for debates about priorities in the health sector. Traditional sources of information about the descriptive epidemiology of diseases, injuries and risk factors are generally incomplete, fragmented and of uncertain reliability and comparability. Lack of a standardized measurement framework to permit comparisons across diseases and injuries, as well as risk factors, and failure to systematically evaluate data quality have impeded comparative analyses of the true public health importance of various conditions and risk factors. As a consequence the impact of major conditions and hazards on population health has been poorly appreciated, often leading to a lack of public health investment. Global disease and risk factor quantification improved dramatically in the early 1990s with the completion of the first Global Burden of Disease Study. For the first time, the comparative importance of over 100 diseases and injuries, and ten major risk factors, for global and regional health status could be assessed using a common metric (Disability-Adjusted Life Years) which simultaneously accounted for both premature mortality and the prevalence, duration and severity of the non-fatal consequences of disease and injury. As a consequence, mental health conditions and injuries, for which non-fatal outcomes are of particular significance, were identified as being among the leading causes of disease/injury burden worldwide, with clear implications for policy, particularly prevention. A major achievement of the Study was the complete global descriptive epidemiology, including incidence, prevalence and mortality, by age, sex and Region, of over 100 diseases and injuries. National applications, further methodological research and an increase in data availability have led to improved national, regional and global estimates for 2000, but substantial uncertainty around the disease burden caused by major conditions, including, HIV, remains. The rapid implementation of cost-effective data collection systems in developing countries is a key priority if global public policy to promote health is to be more effectively informed.
  • Item
    Thumbnail Image
    Distribution of major health risks: Findings from the global burden of disease study
    Rodgers, A ; Ezzati, M ; Hoorn, SV ; Lopez, AD ; Lin, RB ; Murray, CJL ; Novotny, T (PUBLIC LIBRARY SCIENCE, 2004-10)
    BACKGROUND: Most analyses of risks to health focus on the total burden of their aggregate effects. The distribution of risk-factor-attributable disease burden, for example by age or exposure level, can inform the selection and targeting of specific interventions and programs, and increase cost-effectiveness. METHODS AND FINDINGS: For 26 selected risk factors, expert working groups conducted comprehensive reviews of data on risk-factor exposure and hazard for 14 epidemiological subregions of the world, by age and sex. Age-sex-subregion-population attributable fractions were estimated and applied to the mortality and burden of disease estimates from the World Health Organization Global Burden of Disease database. Where possible, exposure levels were assessed as continuous measures, or as multiple categories. The proportion of risk-factor-attributable burden in different population subgroups, defined by age, sex, and exposure level, was estimated. For major cardiovascular risk factors (blood pressure, cholesterol, tobacco use, fruit and vegetable intake, body mass index, and physical inactivity) 43%-61% of attributable disease burden occurred between the ages of 15 and 59 y, and 87% of alcohol-attributable burden occurred in this age group. Most of the disease burden for continuous risks occurred in those with only moderately raised levels, not among those with levels above commonly used cut-points, such as those with hypertension or obesity. Of all disease burden attributable to being underweight during childhood, 55% occurred among children 1-3 standard deviations below the reference population median, and the remainder occurred among severely malnourished children, who were three or more standard deviations below median. CONCLUSIONS: Many major global risks are widely spread in a population, rather than restricted to a minority. Population-based strategies that seek to shift the whole distribution of risk factors often have the potential to produce substantial reductions in disease burden.
  • Item
    Thumbnail Image
    Validation of the symptom pattern method for analyzing verbal autopsy data
    Murray, CJL ; Lopez, AD ; Feehan, DM ; Peter, ST ; Yang, G ; Byass, P (PUBLIC LIBRARY SCIENCE, 2007-11)
    BACKGROUND: Cause of death data are a critical input to formulating good public health policy. In the absence of reliable vital registration data, information collected after death from household members, called verbal autopsy (VA), is commonly used to study causes of death. VA data are usually analyzed by physician-coded verbal autopsy (PCVA). PCVA is expensive and its comparability across regions is questionable. Nearly all validation studies of PCVA have allowed physicians access to information collected from the household members' recall of medical records or contact with health services, thus exaggerating accuracy of PCVA in communities where few deaths had any interaction with the health system. In this study we develop and validate a statistical strategy for analyzing VA data that overcomes the limitations of PCVA. METHODS AND FINDINGS: We propose and validate a method that combines the advantages of methods proposed by King and Lu, and Byass, which we term the symptom pattern (SP) method. The SP method uses two sources of VA data. First, it requires a dataset for which we know the true cause of death, but which need not be representative of the population of interest; this dataset might come from deaths that occur in a hospital. The SP method can then be applied to a second VA sample that is representative of the population of interest. From the hospital data we compute the properties of each symptom; that is, the probability of responding yes to each symptom, given the true cause of death. These symptom properties allow us first to estimate the population-level cause-specific mortality fractions (CSMFs), and to then use the CSMFs as an input in assigning a cause of death to each individual VA response. Finally, we use our individual cause-of-death assignments to refine our population-level CSMF estimates. The results from applying our method to data collected in China are promising. At the population level, SP estimates the CSMFs with 16% average relative error and 0.7% average absolute error, while PCVA results in 27% average relative error and 1.1% average absolute error. At the individual level, SP assigns the correct cause of death in 83% of the cases, while PCVA does so for 69% of the cases. We also compare the results of SP and PCVA when both methods have restricted access to the information from the medical record recall section of the VA instrument. At the population level, without medical record recall, the SP method estimates the CSMFs with 14% average relative error and 0.6% average absolute error, while PCVA results in 70% average relative error and 3.2% average absolute error. For individual estimates without medical record recall, SP assigns the correct cause of death in 78% of cases, while PCVA does so for 38% of cases. CONCLUSIONS: Our results from the data collected in China suggest that the SP method outperforms PCVA, both at the population and especially at the individual level. Further study is needed on additional VA datasets in order to continue validation of the method, and to understand how the symptom properties vary as a function of culture, language, and other factors. Our results also suggest that PCVA relies heavily on household recall of medical records and related information, limiting its applicability in low-resource settings. SP does not require that additional information to adequately estimate causes of death.
  • Item
    Thumbnail Image
    Differential mortality in Iran.
    Khosravi, A ; Taylor, R ; Naghavi, M ; Lopez, AD (Springer Science and Business Media LLC, 2007-07-28)
    BACKGROUND: Among the available data provided by health information systems, data on mortality are commonly used not only as health indicators but also as socioeconomic development indices. Recognizing that in Iran accurate data on causes of death were not available, the Deputy of Health in the Ministry of Health and Medical Education (MOH&ME) established a new comprehensive system for death registration which started in one province (Bushehr) as a pilot in 1997, and was subsequently expanded to include all other provinces, except Tehran province. These data can be used to investigate the nature and extent of differences in mortality in Iran. The objective of this paper is to estimate provincial differences in the level of mortality using this death registration system. METHODS: Data from the death registration system for 2004 for each province were evaluated for data completeness, and life tables were created for provinces after correction for under-enumeration of death registration. For those provinces where it was not possible to adjust the data on adult deaths by using the Brass Growth Balance method, adult mortality was predicted based on adult literacy using information from provinces with reliable data. RESULTS: Child mortality (risk of a newborn dying before age 5, or 5q0) in 2004 varied between 47 per 1000 live births for both sexes in Sistan and Baluchistan province, and 25 per 1000 live births in Tehran and Gilan provinces. For adults, provincial differences in mortality were much greater for males than females. Adult mortality (risk of dying between ages 15 and 60, or 45q15) for females varied between 0.133 in Kerman province and 0.117 in Tehran province; for males the range was from 0.218 in Kerman to 0.149 in Tehran province. Life expectancy for females was highest in Tehran province (73.8 years) and lowest in Sistan and Baluchistan (70.9 years). For males, life expectancy ranged from 65.7 years in Sistan and Baluchistan province to 70.9 years in Tehran. CONCLUSION: Substantial differences in survival exist among the provinces of Iran. While the completeness of the death registration system operated by the Iranian MOH&ME appears to be acceptable in the majority of provinces, further efforts are needed to improve the quality of data on mortality in Iran, and to expand death registration to Tehran province.
  • Item
    Thumbnail Image
    Should data from demographic surveillance systems be made more widely available to researchers?
    Chandramohan, D ; Shibuya, K ; Setel, P ; Cairncross, S ; Lopez, AD ; Murray, CJL ; Zaba, B ; Snow, RW ; Binka, F (PUBLIC LIBRARY SCIENCE, 2008-02)
    Demographic surveillance--the process of monitoring births, deaths, causes of deaths, and migration in a population over time--is one of the cornerstones of public health research, particularly in investigating and tackling health disparities. An international network of demographic surveillance systems (DSS) now operates, mostly in sub-Saharan Africa and Asia. Thirty-eight DSS sites are coordinated by the International Network for the Continuous Demographic Evaluation of Populations and Their Health (INDEPTH). In this debate, Daniel Chandramohan and colleagues argue that DSS data in the INDEPTH database should be made available to all researchers worldwide, not just to those within the INDEPTH Network. Basia Zaba and colleagues argue that the major obstacles to DSS sites sharing data are technical, managerial, and financial rather than proprietorial concerns about analysis and publication. This debate is further discussed in this month's Editorial.
  • Item
    Thumbnail Image
    Measuring the Burden of Neglected Tropical Diseases: The Global Burden of Disease Framework
    Mathers, CD ; Ezzati, M ; Lopez, AD ; Brooker, S (PUBLIC LIBRARY SCIENCE, 2007-11)
    Reliable, comparable information about the main causes of disease and injury in populations, and how these are changing, is a critical input for debates about priorities in the health sector. Traditional sources of information about the descriptive epidemiology of diseases, injuries, and risk factors are generally incomplete, fragmented, and of uncertain reliability and comparability. The Global Burden of Disease (GBD) study has provided a conceptual and methodological framework to quantify and compare the health of populations using a summary measure of both mortality and disability, the disability-adjusted life year (DALY).This paper describes key features of the Global Burden of Disease analytic approach, which provides a standardized measurement framework to permit comparisons across diseases and injuries, as well as risk factors, and a systematic approach to the evaluation of data. The paper describes the evolution of the GBD, starting from the first study for the year 1990, summarizes the methodological improvements incorporated into GBD revisions for the years 2000-2004 carried out by the World Health Organization, and examines priorities and issues for the next major GBD study, funded by the Bill & Melinda Gates Foundation, and commencing in 2007.The paper presents an overview of summary results from the Global Burden of Disease study 2002, with a particular focus on the neglected tropical diseases, and also an overview of the comparative risk assessment for 26 global risk factors. Taken together, trypanosomiasis, Chagas disease, schistosomiasis, leishmaniasis, lymphatic filariasis, onchocerciasis, intestinal nematode infections, Japanese encephalitis, dengue, and leprosy accounted for an estimated 177,000 deaths worldwide in 2002, mostly in sub-Saharan Africa, and about 20 million DALYs, or 1.3% of the global burden of disease and injuries. Further research is currently underway to revise and update these estimates.
  • Item
    Thumbnail Image
    Gender differentials in the evolution of cigarette smoking habits in a general European adult population from 1993-2003
    Costanza, MC ; Salamun, J ; Lopez, AD ; Morabia, A (BIOMED CENTRAL LTD, 2006-05-12)
    BACKGROUND: Describe the recent evolution of cigarette smoking habits by gender in Geneva, where incidence rates of lung cancer have been declining in men but increasing in women. METHODS: Continuous cross-sectional surveillance of the general adult (35-74 yrs) population of Geneva, Switzerland for 11 years (1993-2003) using a locally-validated smoking questionnaire, yielding a representative random sample of 12,271 individuals (6,164 men, 6,107 women). RESULTS: In both genders, prevalence of current cigarette smoking was stable over the 11-year period, at about one third of men and one quarter of women, even though smoking began at an earlier age in more recent years. Older men were more likely to be former smokers than older women. Younger men, but not women, tended to quit smoking at an earlier age. CONCLUSION: This continuous (1993-2003) risk factor surveillance system, unique in Europe, shows stable prevalence of smoking in both genders. However, sharp contrasts in age-specific prevalence of never and former smoking and of ages at smoking initiation indicate that smoking continues a long-term decline in men but has still not reached its peak in women.