Melbourne School of Population and Global Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    No Preview Available
    Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
    Garcia-Closas, M ; Hall, P ; Nevanlinna, H ; Pooley, K ; Morrison, J ; Richesson, DA ; Bojesen, SE ; Nordestgaard, BG ; Axelsson, CK ; Arias, JI ; Milne, RL ; Ribas, G ; Gonzalez-Neira, A ; Benitez, J ; Zamora, P ; Brauch, H ; Justenhoven, C ; Hamann, U ; Ko, Y-D ; Bruening, T ; Haas, S ; Doerk, T ; Schuermann, P ; Hillemanns, P ; Bogdanova, N ; Bremer, M ; Karstens, JH ; Fagerholm, R ; Aaltonen, K ; Aittomaki, K ; Von Smitten, K ; Blomqvist, C ; Mannermaa, A ; Uusitupa, M ; Eskelinen, M ; Tengstrom, M ; Kosma, V-M ; Kataja, V ; Chenevix-Trench, G ; Spurdle, AB ; Beesley, J ; Chen, X ; Devilee, P ; Van Asperen, CJ ; Jacobi, CE ; Tollenaar, RAEM ; Huijts, PEA ; Klijn, JGM ; Chang-Claude, J ; Kropp, S ; Slanger, T ; Flesch-Janys, D ; Mutschelknauss, E ; Salazar, R ; Wang-Gohrke, S ; Couch, F ; Goode, EL ; Olson, JE ; Vachon, C ; Fredericksen, ZS ; Giles, GG ; Baglietto, L ; Severi, G ; Hopper, JL ; English, DR ; Southey, MC ; Haiman, CA ; Henderson, BE ; Kolonel, LN ; Le Marchand, L ; Stram, DO ; Hunter, DJ ; Hankinson, SE ; Cox, DG ; Tamimi, R ; Kraft, P ; Sherman, ME ; Chanock, SJ ; Lissowska, J ; Brinton, LA ; Peplonska, B ; Klijn, JGM ; Hooning, MJ ; Meijers-Heijboer, H ; Collee, JM ; Van den Ouweland, A ; Uitterlinden, AG ; Liu, J ; Lin, LY ; Yuqing, L ; Humphreys, K ; Czene, K ; Cox, A ; Balasubramanian, SP ; Cross, SS ; Reed, MWR ; Blows, F ; Driver, K ; Dunning, A ; Tyrer, J ; Ponder, BAJ ; Sangrajrang, S ; Brennan, P ; Mckay, J ; Odefrey, F ; Gabrieau, V ; Sigurdson, A ; Doody, M ; Struewing, JP ; Alexander, B ; Easton, DF ; Pharoah, PD ; Leal, SM (PUBLIC LIBRARY SCIENCE, 2008-04)
    A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  • Item
    No Preview Available
    An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers:: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2(CIMBA)
    Chenevix-Trench, G ; Milne, RL ; Antoniou, AC ; Couch, FJ ; Easton, DF ; Goldgar, DE (BIOMED CENTRAL LTD, 2007)
    BRCA1 and BRCA2 mutations exhibit variable penetrance that is likely to be accounted for, in part, by other genetic factors among carriers. However, studies aimed at identifying these factors have been limited in size and statistical power, and have yet to identify any convincingly validated modifiers of the BRCA1 and BRCA2 phenotype. To generate sufficient statistical power to identify modifier genes, the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) has been established. CIMBA contains about 30 affiliated groups who together have collected DNA and clinical data from approximately 10,000 BRCA1 and 5,000 BRCA2 mutation carriers. Initial efforts by CIMBA to identify modifiers of breast cancer risk for BRCA1 and BRCA2 mutation carriers have focused on validation of common genetic variants previously associated with risk in smaller studies of carriers or unselected breast cancers. Future studies will involve replication of findings from pathway-based and genome-wide association studies in both unselected and familial breast cancer. The identification of genetic modifiers of breast cancer risk for BRCA1 and BRCA2 mutation carriers will lead to an improved understanding of breast cancer and may prove useful for the determination of individualized risk of cancer amongst carriers.
  • Item
    No Preview Available
    Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories?
    Byrnes, GB ; Southey, MC ; Hopper, JL (BMC, 2008)
    A woman typically presents for genetic counselling because she has a strong family history and is interested in knowing the probability she will develop disease in the future; that is, her absolute risk. Relative risk for a given factor refers to risk compared with either population average risk (sense a), or risk when not having the factor, with all other factors held constant (sense b). Not understanding that these are three distinct concepts can result in failure to correctly appreciate the consequences of studies on clinical genetic testing. Several studies found that the frequencies of mutations in ATM, BRIP1, PALB2 and CHEK2 were many times greater for cases with a strong family history than for controls. To account for the selected case sampling (ascertainment), a statistical model that assumes that the effect of any measured variant multiplies the effect of unmeasured variants was applied. This multiplicative polygenic model in effect estimated the relative risk in the sense b, not sense a, and found it was in the range of 1.7 to 2.4. The authors concluded that the variants are "low penetrance". They failed to note that their model fits predicted that, for some women, absolute risk may be as high as for BRCA2 mutation carriers. This is because the relative risk multiplies polygenic risk, and the latter is predicted by family history. Therefore, mutation testing of these genes for women with a strong family history, especially if it is of early onset, may be as clinically relevant as it is for BRCA1 and BRCA2.
  • Item
    Thumbnail Image
    The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions
    Antoniou, AC ; Cunningham, AP ; Peto, J ; Evans, DG ; Lalloo, F ; Narod, SA ; Risch, HA ; Eyfjord, JE ; Hopper, JL ; Southey, MC ; Olsson, H ; Johannsson, O ; Borg, A ; Passini, B ; Radice, P ; Manoukian, S ; Eccles, DM ; Tang, N ; Olah, E ; Anton-Culver, H ; Warner, E ; Lubinski, J ; Gronwald, J ; Gorski, B ; Tryggvadottir, L ; Syrjakoski, K ; Kallioniemi, O-P ; Eerola, H ; Nevanlinna, H ; Pharoah, PDP ; Easton, DF (NATURE PUBLISHING GROUP, 2008-04-22)
    Multiple genetic loci confer susceptibility to breast and ovarian cancers. We have previously developed a model (BOADICEA) under which susceptibility to breast cancer is explained by mutations in BRCA1 and BRCA2, as well as by the joint multiplicative effects of many genes (polygenic component). We have now updated BOADICEA using additional family data from two UK population-based studies of breast cancer and family data from BRCA1 and BRCA2 carriers identified by 22 population-based studies of breast or ovarian cancer. The combined data set includes 2785 families (301 BRCA1 positive and 236 BRCA2 positive). Incidences were smoothed using locally weighted regression techniques to avoid large variations between adjacent intervals. A birth cohort effect on the cancer risks was implemented, whereby each individual was assumed to develop cancer according to calendar period-specific incidences. The fitted model predicts that the average breast cancer risks in carriers increase in more recent birth cohorts. For example, the average cumulative breast cancer risk to age 70 years among BRCA1 carriers is 50% for women born in 1920-1929 and 58% among women born after 1950. The model was further extended to take into account the risks of male breast, prostate and pancreatic cancer, and to allow for the risk of multiple cancers. BOADICEA can be used to predict carrier probabilities and cancer risks to individuals with any family history, and has been implemented in a user-friendly Web-based program (http://www.srl.cam.ac.uk/genepi/boadicea/boadicea_home.html).
  • Item
    Thumbnail Image
    Evaluation of models to predict BRCA germline mutations
    Kang, HH ; Williams, R ; Leary, J ; Ringland, C ; Kirk, J ; Ward, R (NATURE PUBLISHING GROUP, 2006-10-09)
    The selection of candidates for BRCA germline mutation testing is an important clinical issue yet it remains a significant challenge. A number of risk prediction models have been developed to assist in pretest counselling. We have evaluated the performance and the inter-rater reliability of four of these models (BRCAPRO, Manchester, Penn and the Myriad-Frank). The four risk assessment models were applied to 380 pedigrees of families who had undergone BRCA1/2 mutation analysis. Sensitivity, specificity, positive and negative predictive values, likelihood ratios and area under the receiver operator characteristic (ROC) curve were calculated for each model. Using a greater than 10% probability threshold, the likelihood that a BRCA test result was positive in a mutation carrier compared to the likelihood that the same result would be expected in an individual without a BRCA mutation was 2.10 (95% confidence interval (CI) 1.66-2.67) for Penn, 1.74 (95% CI 1.48-2.04) for Myriad, 1.35 (95% CI 1.19-1.53) for Manchester and 1.68 (95% CI 1.39-2.03) for BRCAPRO. Application of these models, therefore, did not rule in BRCA mutation carrier status. Similar trends were observed for separate BRCA1/2 performance measures except BRCA2 assessment in the Penn model where the positive likelihood ratio was 5.93. The area under the ROC curve for each model was close to 0.75. In conclusion, the four models had very little impact on the pre-test probability of disease; there were significant clinical barriers to using some models and risk estimates varied between experts. Use of models for predicting BRCA mutation status is not currently justified for populations such as that evaluated in the current study.
  • Item
    Thumbnail Image
    Cytomegalovirus, Epstein-Barr virus and risk of breast cancer before age 40 years: a case-control study
    Richardson, AK ; Cox, B ; McCredie, M ; Dite, GS ; Chang, JH ; Gertig, DM ; Southey, MC ; Giless, GG ; Hopper, JL (NATURE PUBLISHING GROUP, 2004-06-01)
    We investigated whether there is an association between cytomegalovirus (CMV) and Epstein-Barr virus (EBV) IgG levels and risk of breast cancer before age 40 years. CMV and EBV IgG levels were measured in stored plasma from 208 women with breast cancer and 169 controls who participated in the Australian Breast Cancer Family Study (ABCFS), a population-based case-control study. CMV and EBV IgG values were measured in units of optical density (OD). Cases and controls did not differ in seropositivity for CMV (59 and 57% respectively; P=0.8) or EBV (97 and 96% respectively; P=0.7). In seropositive women, mean IgG values were higher in cases than controls for CMV (1.20 vs 0.98 OD, P=0.005) but not for EBV (2.65 vs 2.57 OD, P=0.5). The adjusted odds ratios per OD unit were 1.46 (95% CI 1.06-2.03) for CMV IgG and 1.11 (0.93-1.33) for EBV IgG. The higher mean CMV IgG levels found in women with breast cancer could be the result of a more recent infection with CMV, and may mean that late exposure to CMV is a risk factor for breast cancer.
  • Item
    No Preview Available
    The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer
    John, EM ; Hopper, JL ; Beck, JC ; Knight, JA ; Neuhausen, SL ; Senie, RT ; Ziogas, A ; Andrulis, IL ; Anton-Culver, H ; Boyd, N ; Buys, SS ; Daly, MB ; O'Malley, FP ; Santella, RM ; Southey, MC ; Venne, VL ; Venter, DJ ; West, DW ; Whittemore, AS ; Seminara, D (BMC, 2004)
    INTRODUCTION: The etiology of familial breast cancer is complex and involves genetic and environmental factors such as hormonal and lifestyle factors. Understanding familial aggregation is a key to understanding the causes of breast cancer and to facilitating the development of effective prevention and therapy. To address urgent research questions and to expedite the translation of research results to the clinical setting, the National Cancer Institute (USA) supported in 1995 the establishment of a novel research infrastructure, the Breast Cancer Family Registry, a collaboration of six academic and research institutions and their medical affiliates in the USA, Canada, and Australia. METHODS: The sites have developed core family history and epidemiology questionnaires, data dictionaries, and common protocols for biospecimen collection and processing and pathology review. An Informatics Center has been established to collate, manage, and distribute core data. RESULTS: As of September 2003, 9116 population-based and 2834 clinic-based families have been enrolled, including 2346 families from minority populations. Epidemiology questionnaire data are available for 6779 affected probands (with a personal history of breast cancer), 4116 unaffected probands, and 16,526 relatives with or without a personal history of breast or ovarian cancer. The biospecimen repository contains blood or mouthwash samples for 6316 affected probands, 2966 unaffected probands, and 10,763 relatives, and tumor tissue samples for 4293 individuals. CONCLUSION: This resource is available to internal and external researchers for collaborative, interdisciplinary, and translational studies of the genetic epidemiology of breast cancer. Detailed information can be found at the URL http://www.cfr.epi.uci.edu/.
  • Item
    Thumbnail Image
    Risk factors for breast cancer in young women by oestrogen receptor and progesterone receptor status
    McCredie, MRE ; Dite, GS ; Southey, MC ; Venter, DJ ; Giles, GG ; Hopper, JL (NATURE PUBLISHING GROUP, 2003-11-03)
    We used data from 765 cases and 564 controls in the population-based Australian Breast Cancer Family Study to investigate whether, in women under the age of 40, the profile of risk factors differed between breast cancer subtypes defined by joint oestrogen and progesterone receptor status. As hypothesised, no significant differences were found.
  • Item
    No Preview Available
    The intronic G13964C variant in p53 is not a high-risk mutation in familial breast cancer in Australia
    Marsh, A ; Spurdle, AB ; Turner, BC ; Fereday, S ; Thorne, H ; Pupo, GM ; Mann, GJ ; Hopper, JL ; Sambrook, JF ; Chenevix-Trench, G (BIOMED CENTRAL LTD, 2001)
    BACKGROUND: Mutations in BRCA1 and BRCA2 account for approximately 50% of breast cancer families with more than four affected cases, whereas exonic mutations in p53, PTEN, CHK2 and ATM may account for a very small proportion. It was recently reported that an intronic variant of p53--G13964C--occurred in three out of 42 (7.1%) 'hereditary' breast cancer patients, but not in any of 171 'sporadic' breast cancer control individuals (P = 0.0003). If this relatively frequent occurrence of G13964C in familial breast cancer and absence in control individuals were confirmed, then this would suggest that the G13964C variant plays a role in breast cancer susceptibility. METHOD: We genotyped 71 familial breast cancer patients and 143 control individuals for the G13964C variant using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis. RESULTS: Three (4.2%; 95% confidence interval [CI] 0-8.9%) G13964C heterozygotes were identified. The variant was also identified in 5 out of 143 (3.5%; 95% CI 0.6-6.4%) control individuals without breast cancer or a family history of breast cancer, however, which is no different to the proportion found in familial cases (P = 0.9). CONCLUSION: The present study would have had 80% power to detect an odds ratio of 4.4, and we therefore conclude that the G13946C polymorphism is not a 'high-risk' mutation for familial breast cancer.
  • Item
    Thumbnail Image
    The AIB1 glutamine repeat polymorphism is not associated with risk of breast cancer before age 40 years in Australian women
    Montgomery, KG ; Chang, JH ; Gertig, DM ; Dite, GS ; McCredie, MR ; Giles, GG ; Southey, MC ; Hopper, JL ; Campbell, IG (BMC, 2005)
    INTRODUCTION: AIB1, located at 20q12, is a member of the steroid hormone coactivator family. It contains a glutamine repeat (CAG/CAA) polymorphism at its carboxyl-terminal region that may alter the transcriptional activation of the receptor and affect susceptibility to breast cancer through altered sensitivity to hormones. METHODS: We evaluated this repeat polymorphism in the context of early-onset disease by conducting a case-control study of 432 Australian women diagnosed with breast cancer before the age of 40 years and 393 population-based control individuals who were frequency matched for age. Genotyping was performed using a scanning laser fluorescence imager. RESULTS: There were no differences in genotype frequencies between cases and control individuals, or between cases categorized by family history or by BRCA1 and BRCA2 germline mutation status. There was no evidence that the presence of one or two alleles of 26 glutamine repeats or fewer was associated with breast cancer (odds ratio = 1.03, 95% confidence interval = 0.73-1.44), or that women with alleles greater than 29 repeats were at increased risk of breast cancer. Exclusion of women who carried a BRCA1 or BRCA2 mutation (24 cases) and non-Caucasian women (44 cases) did not alter the risk estimates or inferences. We present raw data, including that on mutation carriers, to allow pooling with other studies. CONCLUSION: There was no evidence that risk of breast cancer depends on AIB1 CAG/CAA polymorphism status, even if affected women carry a mutation in BRCA1 or BRCA2.