Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Micro-computed tomography scanning approaches to quantify, parameterize and visualize bioturbation activity in clogged streambeds: A proof of concept
    Lakhanpal, G ; Black, JR ; Casas-Mulet, R ; Arora, M ; Stewardson, MJ (WILEY, 2023-05)
    Abstract Fine particle clogging and faunal bioturbation are two key processes co‐occurring in the hyporheic zone that potentially affect hyporheic exchange through modifications in the sediment structure of streambeds. Clogging results from excessive fine sediment infiltration and deposition in rivers, and it is known to decrease matrix porosity and potentially reduce permeability. Faunal bioturbation activity may compensate for the negative effect of clogging by reworking the sediment, increasing porosity, and preventing further infiltration of fines. Although both processes of clogging and bioturbation have received significant attention in the literature separately, their combined effects on streambed sediment structure are not well understood, mostly due to the lack of a standard methodology for their assessment. Here, we illustrate a novel methodology using X‐ray computed tomography (CT), as proof of concept, to investigate how, together, clogging and bioturbation affect streambed porosity in a controlled flow‐through flume. By visualising gallery formations of an upward conveyor macroinvertebrate; Lumbriculus variegatus as a model species, we quantified bioturbation activity in a clogged streambed, focusing on orientation, depth, and volume at downwelling and upwelling areas of the flume. Gallery creation increased the porosity of the streambed sediment, suggesting a potential improvement in permeability and a possible offset of clogging effects. We illustrate the promising use of X‐ray CT as a tool to assess bioturbation in clogged streambeds, and the potential role of bioturbation activity supporting hyporheic exchange processes in streambeds, warranting further studies to understand the extent of bioturbation impacts in natural systems.
  • Item
    Thumbnail Image
    Influence of Bioturbation on Hyporheic Exchange in Streams: Conceptual Model and Insights From Laboratory Experiments
    Shrivastava, S ; Stewardson, MJ ; Arora, M (AMER GEOPHYSICAL UNION, 2021-02)
    Abstract Bioturbation occurs in streambeds by the action of a range of faunal species, but little is known about how it could modify the hyporheic exchange in streams. Previous experimental work investigating the effects of sediment‐biota interaction on exchange across the sediment‐water interface has been largely conducted in small mesocosms or infiltration columns that do not represent the lotic environment adequately. Therefore, the experimental findings from these studies may not be transferable to flowing water environments (e.g., streams). In this work, we first present a conceptual model demonstrating the causal pathways through which the sediment reworking and burrow ventilation processes (together referred to as bioturbation) could potentially modify the hyporheic flow regime. Next, to study the role of activities of faunal organisms in lotic environments and test some of the arguments presented in the model, laboratory experiments are conducted in re‐circulating flumes. The experiments involved investigating the modification of dune‐induced hyporheic flow due to the activities of a model bioturbating organism, Lumbriculus variegatus, following a control (without organisms) and treatment (with organisms) based experimental design. The sediment reworking activities such as surficial deposition of fecal pellets and burrowing by L. variegatus caused significantly higher hyporheic flux, longer mean residence times, and deeper solute penetration in the treatment flumes relative to the control flumes. We advocate that more intensive laboratory experiments and field investigations must be conducted to test the propositions put forward in the conceptual model and advance our understanding of the role of bioturbation process in fluvial ecosystems.
  • Item
    Thumbnail Image
    Distribution of clay-sized sediments in streambeds and influence of fine sediment clogging on hyporheic exchange
    Shrivastava, S ; Stewardson, MJ ; Arora, M (Wiley, 2020-12-30)
    In this work, the deposition of clay‐sized fine particles (d50 = 0.006 mm) and its subsequent influence on the dune‐induced hyporheic exchange are investigated. Fine sand (D50 = 0.28 mm), coarse sand (D50 = 1.7 mm), and gravel (D50 = 5.5 mm) grains were used to form homogenous model streambeds; one control ‐ no clay input, and two treatments ‐ increasing clay inputs for each grain type. The results indicate that the clogging profiles of clay‐sized sediments may not be predicted accurately using the previously proposed metric based on the relative sizes of infiltrating and substrate sediments. Further, the depositional patterns vary with the initial concentration of clay particles in the surface water. The assessment of clogging profiles in coarse‐grained model streambeds also reveals a preferential infiltration of the clay particles in the hyporheic downwelling regions. The results from the dye tracer test suggest that the accumulation of clay particles altered the exchange characteristics in the treatment flumes. For each grain size, the treatment flumes exhibit lower hyporheic flux and higher median residence times compared to their respective control flumes. The dye penetration depths were lower in treatment flumes with fine and coarse sand compared to their respective control flumes. Interestingly, higher penetration depths were observed in treatment flumes with gravel compared to their respective control flume potentially due to the generation of preferential flow paths in the partially clogged gravel beds. The clogging altered the hyporheic fluxes and residence times in the coarse‐grained model beds to a greater degree in comparison to the fine sand beds. Overall, our findings indicate that the properties of both fine and substrate sediments influence the clogging patterns in streambeds, and the subsequent influence of fine sediment clogging on hyporheic exchange and associated processes may vary across stream ecosystems.
  • Item
    Thumbnail Image
    Sediment Reworking in Streambeds With Fine Sediment Deposits and Its Influence on Hyporheic Flow Regime
    Shrivastava, S ; Stewardson, MJ ; Arora, M (AMER GEOPHYSICAL UNION, 2021-12)
    Abstract The mobilization and mixing of sediments by the activities of in‐stream fauna, referred to as sediment reworking, constantly modifies the hydro‐physical properties of streambeds. This sediment‐organism interaction has been increasingly recognized to influence the hyporheic exchange flows in stream ecosystems, particularly in low flow environments (e.g., during base flow). In this work, we advance the knowledge of sediment reworking process by studying its impact on hyporheic exchange flows in streambeds with fine sediment deposits. Laboratory experiments are conducted in re‐circulating flumes following a control (only fine sediments) and treatment‐ (fine sediments + organisms) based design. The experiments involve studying the interaction of model organisms (Lumbriculus variegatus) with fine sediment (clay) deposits, and its subsequent influence on hyporheic flow regime in homogenous streambeds with fine sand, coarse sand, and gravel as substrate sediments. We observe that model organisms burrowed extensively into the fine sediment layer, mixed the clay particles with underlying grains, and eventually exposed the substrate sediments in the treatment flumes. Consequently, the treatment flumes exhibited greater solute penetration depth, shorter residence times, and higher hyporheic exchange flux compared to their respective control flumes. The results also suggest that the modification of hyporheic exchange flows depends on the overall reworking of the beds that is, the interaction of organisms with both substrate material and deposited fine sediments. It is critical to comprehend the influence of streambed inhabitants on mass and energy exchange across the sediment‐water interface as it has implications on the overall quality of both stream and groundwater.
  • Item
    No Preview Available
    Understanding streambeds as complex systems: review of multiple interacting environmental processes influencing streambed permeability
    Shrivastava, S ; Stewardson, MJ ; Arora, M (Springer, 2020-10-01)
    The permeability of sediments at the sediment–water interface is an important control on several stream ecosystem services. It is well known that streambed permeability varies over several orders of magnitude, however, the environmental processes influencing this variation have received little attention. This review synthesizes the state-of-art knowledge and gaps in our understanding of the key physical and biological processes which can potentially modify the streambed permeability. These processes include—(a) physical clogging due to fine sediments, (b) biological clogging due to microbial biomass, and (c) sediment reworking by in-stream fauna. We highlight that the role of biotic processes (bioclogging and sediment reworking processes) in modifying the streambed permeability has not been investigated in detail. We emphasize that complex feedback mechanisms exist between these abiotic and biotic processes, and an interdisciplinary framework is necessary to achieve a holistic understanding of the spatio-temporal variability in streambed permeability. To this end, we propose to develop a conceptual model for streambed evolution after a disturbance (e.g. floods) as this model could be valuable in comprehending the dynamics of permeability. We also outline the challenges associated with developing a widely applicable streambed evolution model. Nonetheless, as a way forward, we present a possible scenario for the evolution of a streambed following a high flow event based on the trajectory of responses of the above-mentioned environmental processes. Finally, we suggest future research directions that could assist in improving the fundamental understanding of the clogging and sediment reworking processes and consequently of the dynamics of streambed permeability.
  • Item
    No Preview Available
    IMPACTS OF HYDROLOGICAL ALTERATIONS ON WATER QUALITY
    Arora, M ; Casas-Mulet, R ; Costelloe, JF ; Peterson, TJ ; McCluskey, AH ; Stewardson, MJ ; Horne, AC ; Webb, JA ; Stewardson, MJ ; Richter, B ; Acreman, M (ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD, 2017)