Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    A BIM-based framework for property dispute minimization - A case study for Victoria, Australia
    Shin, J ; Rajabifard, A ; Kalantari, M ; Atazadeh, B (ELSEVIER SCI LTD, 2022-08)
  • Item
    Thumbnail Image
    Data lifecycle of underground land administration: a systematic literature review
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (Taylor and Francis Group, 2022)
    Underground Land Administration (ULA) plays a paramount role in recording, registering and managing underground ownership boundaries and rights, restrictions and responsibilities associated with underground assets. 3D digital models provide a great potential to modernise ULA as it is evident in research studies. Several steps, from data acquisition to the use of underground land data have been considered by studies to support 3D ULA. These steps form the ULA data lifecycle. This paper provides an overview of methods, techniques and tools used in different steps of the ULA data lifecycle and identifies research gaps, challenges, and potential opportunities for future studies.
  • Item
    Thumbnail Image
    Integration of cadastral survey data into building information models
    Atazadeh, B ; Mirkalaei, LH ; Olfat, H ; Rajabifard, A ; Shojaei, D (TAYLOR & FRANCIS LTD, 2021-07-03)
  • Item
    Thumbnail Image
    Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (MDPI, 2021-10)
    The development and use of underground space is a necessity for most cities in response to rapid urbanisation. Effective underground land administration is critical for sustainable urban development. From a land administration perspective, the ownership extent of underground assets is essential for planning and managing underground areas. In some jurisdictions, physical structures (e.g., walls, ceilings, and utilities) are also necessary to delineate the ownership extent of underground assets. The current practice of underground land administration focuses on the ownership of underground space and mostly relies on 2D survey plans. This inefficient and fragmented 2D-based underground data management and communication results in several issues including boundary disputes, underground strikes, delays and disruptions in projects, economic losses, and urban planning issues. This study provides a review of underground land administration from three common aspects: legal, institutional, and technical. A range of important challenges have been identified based on the current research and practice. To address these challenges, the authors of this study propose a new framework for 3D underground land administration. The proposed framework outlines the future research directions to upgrade underground land administration using integrated 3D digital approaches.
  • Item
    Thumbnail Image
    A Proposal for Streamlining 3D Digital Cadastral Data Lifecycle
    Olfat, H ; Atazadeh, B ; Badiee, F ; Chen, Y ; Shojaei, D ; Rajabifard, A (MDPI, 2021-06)
    In urban areas, managing the lifecycle of land and property data related to interlocked and intertwined structures and infrastructure services is a grand challenge for cadastral systems. Addressing the physical and legal complexities of vertically stratified ownership arrangements is a major step towards the modernization of cadastral systems. The research problem that this study addresses is the lack of a simplified and effective approach for modelling, storing, visualizing, and querying 3D cadastral data for multi-story buildings. This research primarily leads to the development of an approach based on Building Information Modelling (BIM), as well as state-of-the-art ETL (extract, transform, load), database and visualization technologies for 3D cadastral data lifecycle management in current practices. The proposed steps for recording, preserving, and disseminating 3D cadastral data are crucial in shifting current 2D cadastral systems towards 3D digital information systems. The results showed improvements in data creation, storage, conversion, and communication when upgrading from a 2D to 3D digital cadastre. Therefore, this study confirmed that streamlining the lifecycle of cadastral data using 3D environments would mitigate issues associated with the current fragmented 2D cadastral datasets used in the multi-story developments.
  • Item
    Thumbnail Image
    Identification of Property Boundaries Using an IFC-Based Cadastral Database
    Barzegar, M ; Rajabifard, A ; Kalantari, M ; Atazadeh, B (MDPI, 2021-03)
    Property boundaries have a significant importance in cadaster as they define the legal extent of the ownership rights. Among 3D data models, Industry Foundation Class (IFC) provides the potential capabilities for modelling property boundaries in a 3D environment. In some jurisdictions, such as Victoria, Australia, some property boundaries are assigned to the faces of building elements which are modelled as solids in IFC. In order to retrieve these property boundaries, boundary identification analysis should be performed, and faces of building elements should be extracted. However, extracting faces of solids from an IFC file is not possible as faces of solids are not considered as a separate object-type. Therefore, this paper aims to develop a spatial query approach for the identification of property boundaries using 3D spatial operators of a database to address this problem. The viability of the developed approach is tested using an IFC-based 3D cadastral database with two real datasets and one test dataset. The proposed methodology not only supports vertical walls and horizontal roofs but can also be used for detecting boundaries in properties surrounded by complex building structures such as oblique and curved walls and roofs.
  • Item
    Thumbnail Image
    Applying BIM to support dispute avoidance in managing multi-owned buildings
    Shin, J ; Rajabifard, A ; Kalantari, M ; Atazadeh, B (Elsevier, 2020-12-01)
    With the growth of high-density living, disputes experienced by residents in multi-owned buildings (MOBs) have become an ongoing challenge in urban areas. A significant number of the disputations have found their root cause in the issues concerning improper use and management of MOBs by residents. It stems from their inaccurate understanding of ownership rights that are inherently 3D but using 2D cadastral survey plans, authoritative documents of ownership. This research explores the ability of building information modeling (BIM) to address required information for improving the perception of ownership rights that affect resident behaviors in managing MOBs. An open data model of BIM is extended to accommodate the necessary information for preventing resident misbehaviors that led to dispute cases in Victoria state, Australia. In this study, we implement BIM data of an MOB where a real dispute happened to demonstrate the validity of the enriched data model on the information delivery and an enhanced understanding of ownership rights. It is confirmed that the use of BIM facilitates the alleviation of the misbehaviors by informing residents with accurate communication of ownership rights and could support the avoidance of disputes in MOBs.
  • Item
    Thumbnail Image
    Linking Land Administration Domain Model and BIM environment for 3D digital cadastre in multi-storey buildings
    Atazadeh, B ; Olfat, H ; Rajabifard, A ; Kalantari, M ; Shojaei, D ; Marjani, AM (Elsevier BV, 2021-05-01)
    3D digital cadastral systems intend to provide a fully-integrated 3D view of legal boundaries and rights, restrictions and responsibilities (RRR) in multi-storey properties, which is aligned with the physical reality. Our cognitive understanding of legal boundaries and RRR information is more communicable when we link it to our visual perception of the real world. However, there is a knowledge gap in logical relationships between legal and physical views as most of the existing approaches that integrate 3D legal and physical dimensions have been mainly proposed on a conceptual level. The main argument of this study is that the multi-dimensional nature of BIM provides the ability to extend this environment with concepts defined in Land Administration Domain Model (LADM) for the purpose of 3D digital cadastre in buildings. Therefore, this study investigated how an open BIM-based data model, known as Industry Foundation Classes (IFC), can be extended with LADM data elements to support integration of legal and physical views. This will create a linkage between LADM and BIM environment, which would subsequently provide a better cognitive understanding of legal spaces.
  • Item
    Thumbnail Image
    Design and development of an LADM-driven 3D Land administration system: Lessons learned in Malaysia
    Rajabifard, A ; Atazadeh, B ; Kalantari, M ; Olfat, H ; Shojaei, D ; Badiee, F (ELSEVIER SCI LTD, 2021-03)
    Urban infrastructure has been dramatically increasing in Malaysian cities over the last decades. The current 2D-based practices are challenged by the stratified development of urban land in underground and aboveground areas. Currently, in Malaysia, surveying measurements are stored in a 2D-based cadastral database in the form of horizontal coordinates. However, this method is not capable to accommodate ownership complexities in the vertical dimension. The existing methods to capture, compute and adjust cadastral survey data need to be upgraded for the purpose of implementing a 3D land administration system (LAS) in Malaysia. The transformation from 2D to 3D LAS should be in accordance with a standard-based approach. Land Administration Domain Model (LADM): ISO 19152:2012 provides an internationally accepted standard model for recording and managing cadastral data. This study aims to design and develop an LADM-driven 3D LAS for Malaysia by building on existing research carried out for LADM adoption in this country. The proposed approach includes modifications in the existing workflows for capturing 3D survey data, new architecture to support 3D land parcels, and a new database for creating an LADM-based 3D LAS in line with data requirements in Malaysia. The major part of the upgrade from 2D to a 3D environment consists of capturing, processing and management of height of survey points that define parcel boundaries. This study demonstrated and confirmed that the LADM standard plays a significant role in realising a 3D-enabled system for Malaysian land administration.
  • Item
    Thumbnail Image
    Moving Towards a Single Smart Cadastral Platform in Victoria, Australia
    Olfat, H ; Atazadeh, B ; Rajabifard, A ; Mesbah, A ; Badiee, F ; Chen, Y ; Shojaei, D ; Briffa, M (MDPI AG, 2020-05-01)
    Various jurisdictions are currently in the process of reforming their cadastral systems to achieve a smart and multidimensional system that provides a range of land administration services to the wider community. The state of Victoria in Australia has been actively modernizing its cadastral system since the 1990s by developing a digital cadastre database, an online digital cadastral plan lodgment portal named SPEAR, and smart cadastre services for validating and visualizing digital data in the ePlan (LandXML) format. However, due to challenges in the implementation of the smart cadastre lifecycle in Victoria, the uptake of ePlan is currently low across the surveying industry. This study aims to explore the feasibility of implementing a smart platform for managing ePlan lodgments in Victoria, which provides all required services within an integrated digital environment. To achieve this aim, the business and technical requirements for realizing a single smart cadastral platform are first explored. A proof of concept (PoC) is then developed to showcase a suitable approach for developing this platform. The evaluation of the PoC confirmed that integration of smart cadastre services into a single environment could significantly streamline the digital cadastral data management processes in Victoria