Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    New circularity indicator for decision making in the stockpile management of construction and demolition waste: Perspectives of Australian practitioners
    Pilipenets, O ; Hui, K ; Gunawardena, T ; Mendis, P ; Aye, L (Elsevier BV, 2024-07-01)
    Despite the increasing popularity of the circular economy, there remains a lack of consensus on how to quantify circularity, a critical aspect of the practical implementation of this model. To address this gap, this article examines the industry's perspective and efforts toward implementing the circular economy in real-world scenarios. We conducted 40 interviews with engineers, project leaders, and top-level managers in the Australian construction sector. Using Saldaña's coding approach, we analysed their views on circular economy practices and efforts within their organisations. Our findings reveal while waste minimisation, reduction of greenhouse gas emissions, and cost considerations are widely regarded as essential indicators of a successful circular economy model, the significance of waste storage and long-term stockpiling while awaiting treatment has been overlooked or under-emphasised in industry practices and academic literature. Stockpiling of waste has often been seen as a staging process in waste treatment. However, based on industry insights, it accumulates to the point of mismanagement when it becomes a safety and environmental concern. Addressing this oversight, we propose a storage circularity indicator that allows incorporating waste storage and stockpiling in circular economy models. Our research contributes to various environmental and waste management aspects, supporting policies and strategies for solid waste management and excessive stockpile prevention. By emphasising the significance of storage circularity, we clarify waste prevention techniques and address socio-economic issues such as the urgent need to reduce long-term stockpiling of solid waste. This work highlights the importance of decision-support tools in waste management to facilitate the implementation of circular economy principles. Our proposed storage circularity indicator promotes industrial collaboration, aligning with the concept of industrial symbiosis to optimise resource use and minimise waste generation. By discussing these topics, we aim to contribute to the advancement of more robust waste management strategies and policies that promote sustainable production and consumption practices.
  • Item
    No Preview Available
    Upcycling opportunities and potential markets for aluminium composite panels with polyethylene core (ACP-PE) cladding materials in Australia: A review
    Pilipenets, O ; Gunawardena, T ; Hui, FKP ; Nguyen, K ; Mendis, P ; Aye, L (ELSEVIER SCI LTD, 2022-11-28)
    Many buildings worldwide have high fire-risk materials as part of their cladding. As governments in Australia strive to make buildings safer, it is expected that a large volume of end-of-life dangerous cladding will be replaced with safer materials. This high volume of hazardous materials might be upcycled into value-added products. This article presents a systematic market analysis and literature review in identifying current and potential uses for the raw materials used in hazardous ACP-PE cladding. The most promising areas were identified to be non-food-contact packaging (US$228 M p.a.), non-pressure pipes (US$30 M p.a.), footwear (US$5.29 M p.a.) and 3D printer filament (US$2.73 M p.a.)
  • Item
    Thumbnail Image
    Airborne and impact sound performance of modern lightweight timber buildings in the Australian construction industry
    Jayalath, A ; Navaratnam, S ; Gunawardena, T ; Mendis, P ; Aye, L (Elsevier BV, 2021-12)
    Timber usage in the Australian construction industry has significantly increased due to its strength, aesthetic properties and extended allowances recently introduced in building codes. However, issues with acoustic performance of lightweight timber buildings were reported due to their inherit product variability and varying construction methods. This article reviews the recent literature on the transmissions of impact and airborne sounds, flanking transmission of timber buildings, and the state of computer prediction tools with reference to the Australian practice. An in-depth analysis of issues and an objective discussion related to acoustic performance of timber buildings are presented. Timber is a lightweight material and shows low airborne sound resistance in low frequency range. Attenuation of sound transmission with addition of mass, layer isolation, different products like cross-laminated timber and prefabrication are discussed. Challenges in measuring sound transmissions and reproducibility of results in low frequency ranges are discussed. Well-defined measurement protocols and refined computer simulation methods are required. The serviceability design criteria for modern lightweight timber applications in Australia need to be re-evaluated in the area of impact generated sound. Developing computer tools to predict airborne and impact sound transmission in lightweight timber buildings is quite challenging as several components such as timber members and complex connections with varying stiffnesses are non-homogeneous by nature. Further, there is a lack of experimentally validated and computationally efficient tools to predict the sound transmission in timber buildings. Computer prediction tools need to be developed with a focus on mid-frequency transmission over flanks and low-frequency transmission of timber and prefabricated buildings.
  • Item
    Thumbnail Image
    Time-efficient post-disaster housing reconstruction with prefabricated modular structures
    Gunawardena, T ; Tuan, N ; Mendis, P ; Aye, L ; Crawford, RH (Open House International Association, 2014-09-01)
    With many natural disasters such as earthquakes, cyclones, bushfires and tsunamis destroying human habitats around the world, post-disaster housing reconstruction has become a critical topic. The current practice of post-disaster recon- struction consists of various approaches that carry affected homeowners from temporary shelters to permanent hous- ing. While temporary shelters may be provided within a matter of days as immediate disaster relief, permanent hous- ing can take years to complete. However, time is critical, as affected communities will need to restore their livelihoods as soon as possible. Prefabricated modular construction has the potential to drastically improve the time taken to pro- vide permanent housing. Due to this time-efficiency, which is an inherent characteristic of modular construction, it can be a desirable strategy for post-disaster housing reconstruction. This paper discusses how prefabricated modular struc- tures can provide a more time-efficient solution by analysing several present-day examples taken from published post- disaster housing reconstruction processes that have been carried out in different parts of the world. It also evaluates how other features of modular construction, such as ease of decommissioning and reusability, can add value to post- disaster reconstruction processes and organisations that contribute to the planning, design and construction stages of the reconstruction process. The suitability of modular construction will also be discussed in the context of the guidelines and best practice guides for post-disaster housing reconstruction published by international organisations. Through this analysis and discussion, it is concluded that prefabricated modular structures are a highly desirable time-efficient solu- tion to post-disaster housing reconstruction.