Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Development and validation of a transient simulation model of a full-scale PCM embedded radiant chilled ceiling
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (TSINGHUA UNIV PRESS, 2023-06)
    Abstract The recent significant rise in space cooling energy demand due to the massive use of air-conditioning systems has adversely changed buildings’ energy use patterns globally. The updated energy technology perspectives highlight the need for innovative cooling systems to address this growing cooling demand. Phase change material embedded radiant chilled ceiling (PCM-RCC) has lately acquired popularity as they offer more efficient space cooling together with further demand-side flexibility. Recent advancements in PCM-RCC applications have increased the necessity for reliable simulation models to assist professionals in identifying improved designs and operating settings. In this study, a transient simulation model of PCM-RCC has been developed and validated using measured data in a full-scale test cabin equipped with newly developed PCM ceiling panels. This model, developed in the TRNSYS simulation studio, includes Type 399 that uses the Crank-Nicolson algorithm coupled with the enthalpy function to solve transient heat transfer in PCM ceiling panels. The developed model is validated in both free-running and active operation modes, and its quality is then evaluated using several validation metrics. The results obtained in multiple operating scenarios confirm that the model simulates the transient behaviour of the PCM-RCC system with an accuracy within ±10%. Aided by this validated model, which offers the user detailed flexibilities in the system design and its associated operating schemas, PCM-RCC’s potentials regarding peak load shifting, energy savings, and enhanced thermal comfort can be investigated more reliably.
  • Item
    Thumbnail Image
    Thermal and energy performance evaluation of a full-scale test cabin equipped with PCM embedded radiant chilled ceiling
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Elsevier BV, 2023-06-01)
    The escalating global demand for space cooling has led to the emergence of new cooling technologies, including the phase change material embedded radiant chilled ceiling (PCM-RCC) system. This technology improves energy efficiency and indoor environmental quality, while also offering demand-side flexibility. The present study experimentally evaluates the thermal efficiency and energy performance of a PCM-RCC system in a full-scale test cabin equipped with PCM panels. Here, the transient thermal behaviour of PCM ceiling panels besides the cooling energy delivered during charging-discharging cycles are examined. The indoor thermal comfort and peak electricity demand reduction enabled by the present PCM-RCC are also discussed. The results reveal that chilled water circulation for 4–5 h overnight was sufficient to fully recharge the PCM panels. Over 80% of the occupancy time was classified as “Class B″ thermal comfort according to ISO 7730. The system's daily electricity usage was mostly concentrated during off-peak hours, accounting for ∼70% of the total usage. While the controlling schedule used in this study responded to the transient thermal behaviour of the indoor space and PCM ceiling panels, a more dynamic, predictive schedule is necessary to improve the system's overall efficiency and further enhance indoor thermal comfort in response to the changing environmental conditions.
  • Item
    Thumbnail Image
    Lessons Learned from PCM Embedded Radiant Chilled Ceiling Experiments in Melbourne
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Elsevier, 2022-06)
    Buildings are responsible for over a third of energy consumption worldwide, particularly for the increasing demand of air-conditioners in response to the more extreme heat around the globe. It is imperative to move towards more energy-efficient space cooling alternatives. The integration of phase change material (PCM) with a radiant chilled ceiling (RCC) is a promising technology due to its benefits regarding energy efficiency and indoor environmental quality. This article presents a field study conducted on a newly-developed PCM embedded radiant chilled ceiling (PCM-RCC) installed in a stand-alone cabin located in Melbourne. The study evaluates the thermal and energy performance of the system through investigation of the transient thermal behaviour of PCM panels in charging-discharging cycles, the indoor comfort conditions, and the electricity peak demand. It was observed that the proposed PCM-RCC can provide satisfactory comfort conditions and contribute to load shifting if a refined operating strategy is applied. The efficiency of PCM recharge overnight depends on several factors that need to be carefully considered in design. The challenges related to the implementation of optimal operating dynamic schedules in response to the thermal behaviour of PCM-RCC, and accurate weather forecasting should be addressed to realise the full potential of this technology.