Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Effective use of offsite manufacturing for public infrastructure projects in Australia
    Gunawardena, D ; Mendis, P ; Ngo, D ; Rismanchi, B ; Aye, L (ICE Publishing, 2019)
    Prefabrication and offsite manufacturing have featured in various forms in an in-situ based construction industry for many decades. Scarcity of both human and material resources is challenging the future of traditional construction practices. Due to its many benefits such as speed of project delivery, minimum work on site, minimised construction waste and higher quality assurance, offsite manufacturing is gradually evolving into an essential technology in the construction industry. As a result of re-cent government initiatives, Australia is seeing a considerable increase in the use of offsite manufacturing and prefabricated modular technologies in delivering public infrastructure projects such as schools, healthcare facilities, and public transport facilities. Such projects are ably supported by academic research collaborating with the industry to ensure that the outcomes keep improving to achieve the highest quality and functionality. This paper discusses how multidisciplinary research addresses issues such as structural performance, construction technology, design for manufacturing and assembly and indoor environ-mental quality for the delivery of such public infrastructure projects. These projects have set an example in how offsite manufacturing supported by academic research can be beneficial for effectively delivering the greater good to the society.
  • Item
    No Preview Available
    Working fluid selection for a facade integrated solar cooling system
    Wu, D ; Aye, L ; Ngo, TD (Australian Solar Energy Society, 2014-05-08)
  • Item
    Thumbnail Image
    Fire resistance of a prefabricated bushfire bunker using aerated concrete panels
    Nguyen, T ; Ngo, DT ; Tran, P ; Mendis, P ; Aye, L ; Kristombu Baduge, KS (Elsevier, 2018-06-20)
    Prefabricated lightweight aerated concrete (PLAC) panels provide low thermal conductivity, potentially high stiffness-to-weight ratios, cost-effective material and structural systems and rapid modular construction. These panels can be utilised as floor slabs or external walls for various applications in building construction. The fire performance of the PLAC panel is examined in this work for a particular case, namely a prefabricated emergency bushfire shelter, which is one of the key applications of PLAC panels. Since, bushfires have unique heating curves, standardised tests are not useful and the system needs to be tested in a manner such that the heat flux of an actual bush fire can be reproduced. In this study, the fire performance enhancement of dual-skin bushfire bunkers, which are comprised of lightweight concrete and base metal thickness (BMT) steel, are examined experimentally and validated numerically. The Speedpanel PLAC modular panel explored in this work is a lightweight wall system primarily used for acoustic and thermal insulation purposes. Burning experimental studies of a single panel and dual-skin bunkers are carried out on a full scale. The experimental results are compared with fire safety codes for building materials to identify the key areas for improvements. A fire dynamic numerical model has been developed in this work using the Fire Dynamics Simulator (FDS) to simulate the burning process of PLAC structures. Numerical results of heat production are presented in comparison with experimental observations for validating the computational model. The proposed numerical model is used to predict the fire performance of a dual-skin bushfire bunker, demonstrating the need to have at least two PLAC layers to ensure fire safety compliance.
  • Item
    Thumbnail Image
    An optimum construction strategy for multi-story residential prefabricated modular buildings
    Thalpe Guruge, ; Samarasinghe, ; Gunawardena, ; Nguyen, T ; Mendis, P ; Ngo, T ; Aye, L (ZEMCH Network, 2018-01-29)
    Prefabrication is recognised as the way forward in building construction by the industry as it delivers quality yet affordable mass customisable houses faster than traditional on-site construction. The prefabrication of multi-story buildings transforms traditional construction into off-site manufacturing of repetitive components. Currently there are three main structural systems being adopted for modular multi-story buildings; 1) Building with a rigid in-situ central core to which the modules are connected, 2) A podium structure which acts as a base where modules are placed on top of it, 3) Fully modular structure with strategically placed load bearing modules. Current investigations on these systems focus on improving their benefits such as construction time, cost, safety and quality based on one variable at a time. However, there is a lack of studies with a holistic approach to identify the optimum structural system. This paper aims to define an Optimum Modular System Index (OMI) which will be based upon three main indices; Assembly cost penalty Index (ACPI), Onsite handling cost penalty Index (HCPI) and Concrete cost penalty Index (CCPI). Determination of OMI is expected to provide a framework to identify the optimum construction system for multi-story residential prefabricated modular buildings.
  • Item
    Thumbnail Image
    Sustainable Prefabricated Modular Buildings
    Gunawardena, D ; Mendis, P ; Ngo, D ; Aye, L ; Alfano, J ; Dissanayake, R (ICSB, 2014)
    Economy, speed of construction and improved environmental performance are critical variables that challenge the modern construction industry to strike a balance between. Employing innovative prefabricated modular structures is one key strategy used to achieve these goals. Therefore, there is an increasing demand for detailed scientific research that deals with the potential environmental benefits of prefabrication, particularly in areas of embodied energy savings resulting from waste reduction and improved efficiency of material usage. This paper gives a brief overview of prefabricated modular structures and aims to highlight the sustainability characteristics of this technology compared to conventional construction methods. A case study was carried out on an eight-storey, residential building. It was found that a steel-structured prefabricated system resulted in a significantly reduced material consumption of up to 78% by mass compared to conventional concrete construction. However, the prefabricated steel building resulted in an increase in embodied energy compared to the concrete building mainly due to the inherent characteristics of steel manufacturing processes. This form of construction has the potential to contribute significantly towards improved environmental sustainability in the construction industry while providing fast outputs with value for the investments.
  • Item
    No Preview Available
    Green Plot Ratio and MUtopia: The integration of green infrastructure into an ecological model for cities
    Ong, BL ; Fryd, O ; Hes, D ; Ngo, T ; AYE, L ; Bay, JHP ; Lehmann, S (Routledge - Taylor & Francis, 2017-07-06)
  • Item
    Thumbnail Image
    Time-efficient post-disaster housing reconstruction with prefabricated modular structures
    Gunawardena, T ; Tuan, N ; Mendis, P ; Aye, L ; Crawford, RH (Open House International Association, 2014-09-01)
    With many natural disasters such as earthquakes, cyclones, bushfires and tsunamis destroying human habitats around the world, post-disaster housing reconstruction has become a critical topic. The current practice of post-disaster recon- struction consists of various approaches that carry affected homeowners from temporary shelters to permanent hous- ing. While temporary shelters may be provided within a matter of days as immediate disaster relief, permanent hous- ing can take years to complete. However, time is critical, as affected communities will need to restore their livelihoods as soon as possible. Prefabricated modular construction has the potential to drastically improve the time taken to pro- vide permanent housing. Due to this time-efficiency, which is an inherent characteristic of modular construction, it can be a desirable strategy for post-disaster housing reconstruction. This paper discusses how prefabricated modular struc- tures can provide a more time-efficient solution by analysing several present-day examples taken from published post- disaster housing reconstruction processes that have been carried out in different parts of the world. It also evaluates how other features of modular construction, such as ease of decommissioning and reusability, can add value to post- disaster reconstruction processes and organisations that contribute to the planning, design and construction stages of the reconstruction process. The suitability of modular construction will also be discussed in the context of the guidelines and best practice guides for post-disaster housing reconstruction published by international organisations. Through this analysis and discussion, it is concluded that prefabricated modular structures are a highly desirable time-efficient solu- tion to post-disaster housing reconstruction.
  • Item
    Thumbnail Image
    Optimisation and financial analysis of an organic Rankine cycle cooling system driven by facade integrated solar collectors
    Wu, D ; Aye, L ; Tuan, N ; Mendis, P (ELSEVIER SCI LTD, 2017-01-01)
    The use of a solar cooling system has the potential to reduce the amount of energy required for cooling buildings. One of the most important methods of improving energy efficiency in buildings is by carefully designing building façades. A façade integrated evacuated tube collector (ETC)-organic Rankine cycle (ORC)-vapour compression cycle (VCC) was applied in this study. To optimise the design parameters of ORC, a steady-state semi-empirical model was developed in Engineering Equation Solver (EES). The optimum number of plates in each heat exchanger is obtained by maximising the net present value (NPV) of electricity savings. The financial performance of the optimised system was assessed through a unit cooling cost (UCC) analysis. It was found that the UCC of the optimised facade integrated ETC-ORC-VCC system is $0.24 per kWhr of cooling effect.
  • Item
    Thumbnail Image
    An Integrated Simulation and Visualisation Platform for the Design of Sustainable Urban Developments in a Peri-Urban Context
    Arora, M ; Tuan, N ; Aye, L ; Malano, H ; Lade, O ; Maheshwari, B ; Singh, VP ; Thoradeniya, B (SPRINGER INTERNATIONAL PUBLISHING AG, 2016)
    Designing sustainable urban development is a multi-dimensional and multi-disciplinary challenge that can benefit from next-generation modelling tools to achieve high performance outcomes and integrated assessments. This chapter presents and demonstrates the use of ‘MUtopia’, an information modelling platform for assessing alternative urban development scenarios. The use of the platform is illustrated through the application to a peri-urban development in the city of Melbourne, Australia. The modelling platform allows simulation of various transition and future scenarios at the precinct level. The platform is capable of extracting data to assist in developing and assessing the performance of different components (land use, individual buildings and infrastructure related to energy and water supply and use, waste management and transport systems) by taking advantage of the platform’s unique scalability. The selected case study is a 31.5 ha Parcel of land, a typical peri-urban development in Melbourne’s fringe located in West Cranbourne. A key aspect of the development is the design of a sustainable precinct that is affordable, provides a greater level of amenity and incorporates biolink corridors and natural open spaces critical to the preservation of native biodiversity. As a low rise suburban development this project presents a unique opportunity for the application of the MUtopia platform and to demonstrate how the tool can lead to optimum design parameters for achieving sustainable development. This chapter also describes how MUtopia can be used to optimise the selection and design of sustainable and resilient energy, water and waste infrastructure and its integration with existing infrastructure.
  • Item
    Thumbnail Image
    Effects of phase change material roof layers on thermal performanceof a residential building in Melbourne and Sydney
    Jayalath, A ; AYE, L ; Mendis, P ; Ngo, T (Elsevier, 2016-04-05)
    This paper assesses the effectiveness of Phase Change Materials (PCMs) for the improvement of the thermal performance and the thermal comfort of a residential building in Melbourne. The incorporation of PCMs in buildings with their significant heat storage capacity can delay the heat transfer and reduce the cooling and heating loads. Numerical simulation is a useful tool for comprehensive assessments and optimization of PCM applications in buildings. Thus an available TRNSYS component, PCM Wall: Type1270, was implemented with Type56 (Multi zone component). PCM Wall TRNSYS component has been validated with some experimental data published in the open literature. The validated model was then utilised to simulate the thermal performance of a residential building which has a PCM roof layer. The building is a typical single-storey, three bed room residential building in Melbourne. It was found that the PCM roof layer can reduce the cooling and heating loads whilst providing better thermal comfort for occupants with reduced indoor temperature fluctuations.