Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    Fire safety performance of 3D GFRP nanocomposite as a cladding material
    Soufeiani, L ; Nguyen, KTQ ; White, N ; Foliente, G ; Wang, H ; Aye, L (ELSEVIER SCI LTD, 2022-10)
    Vertical fire spread along highly flammable claddings is a major safety issue for buildings. In this project, a potential new type of cladding material, 3D Glass Fibre Reinforced Polymer (3D GFRP) with improved thermal stability, and fire performance is developed. 3D GFRP nanocomposite samples were fabricated with different percentages of Sepiolite (Sep), Sepiolite-phosphate (SepP), Ammonium Polyphosphate (APP) flame retardant, and 3D glass fabrics. Synthesis of SepP, dispersion analysis of nanoparticles, and manufacturing process have been studied. The characterisation of materials was conducted using Scanning Electron Microscopy, Helium Ion Microscopy, Transmission Electron Microscopy, Thermogravimetric Analysis (TGA), and X-ray Diffraction Analysis. The thermal stability and fire behaviour of the 3D GFRP nanocomposite was studied via TGA and cone calorimeter test. TGA results showed that the optimum amount of additives that improved the thermal stability is 15% flame retardants. Results of cone calorimeter tests showed that different percentages of APP, Sep, and SepP decreased the peak of the heat release rate between 4% and 42%. Also, the effects of APP flame retardant in improving thermal and fire reaction properties were more than Sep and SepP. The test results of 3D GFRP nanocomposite also showed a prospective cladding that can benefit the construction industry in near future.
  • Item
    No Preview Available
    Emergency
    McNiven, B ; Aye, L ; Holzer, D (Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH), 2022-10-31)
    As part of the i-Hub project, masters-level architectural and engineering students from the University of Melbourne, industry consultants, university academics, and Ambulance Victoria staff embraced the challenge of designing net zero emergency response stations. The university’s Brendon McNiven; Lu Aye, F.AIRAH; and Dominik Holzer discuss.
  • Item
    Thumbnail Image
    Sustainability and circular economy as part of strategic goals of businesses in Australia: Preliminary findings
    Pilipenets, O ; Hui, K ; Gunawardena, D ; Mendis, P ; Aye, L (Department of Infrastructure Engineering, 2022-09-27)
  • Item
    No Preview Available
    Exploring policy mixes for low-carbon and just energy transitions systems: An Australian case
    Rojas Arevalo, A ; de Haan, F ; Candy, S ; Foliente, G ; Aye, L (DUMU, 2022-11-09)
  • Item
    No Preview Available
    Upcycling opportunities and potential markets for aluminium composite panels with polyethylene core (ACP-PE) cladding materials in Australia: A review
    Pilipenets, O ; Gunawardena, T ; Hui, FKP ; Nguyen, K ; Mendis, P ; Aye, L (ELSEVIER SCI LTD, 2022-11-28)
    Many buildings worldwide have high fire-risk materials as part of their cladding. As governments in Australia strive to make buildings safer, it is expected that a large volume of end-of-life dangerous cladding will be replaced with safer materials. This high volume of hazardous materials might be upcycled into value-added products. This article presents a systematic market analysis and literature review in identifying current and potential uses for the raw materials used in hazardous ACP-PE cladding. The most promising areas were identified to be non-food-contact packaging (US$228 M p.a.), non-pressure pipes (US$30 M p.a.), footwear (US$5.29 M p.a.) and 3D printer filament (US$2.73 M p.a.)
  • Item
    Thumbnail Image
    Effects of Working from Home on Greenhouse Gas Emissions and the Associated Energy Costs in Six Australian Cities
    Navaratnam, S ; Jayalath, A ; Aye, L (MDPI, 2022-04)
    Working from home (WFH) has been imposed due to the COVID-19 pandemic. The adoption of WFH impacts energy use in the residential, commercial, and transportation sectors. Consequently, this affects the greenhouse gas emission (GHGE) and the associated energy costs to workers and employers. This study estimates the effects of WFH on the GHGE and energy-related costs in the residential, commercial, and transportation sectors. A simple linear model was used to estimate the changes in the GHGEs and cost by a typical employee when WFH practice is adopted for 1.5 and 4 days per week. The adoption of WFH reduces the operational GHGE accounted for commercial buildings and transport. However, it increases the operational GHGE accounted for residential buildings, which is a maximum of about 6% and 12%, respectively, for WFH 1.5 and 4 days. The reduction of GHGE from transport is significantly higher than that of residential buildings. The GHGE reductions from the transport sector are about 30% and 80%, respectively, for WFH 1.5 days and 4 days per week. WFH for 1.5 and 4 days per week reduces the national annual GHGE by about 1.21 Mt CO2-e and 5.76 Mt CO2-e, respectively. Further, the annual transportation cost of an employee is reduced by 30% and 80% in each city when the employee WFH for 1.5 and 4 days per week. The outcomes of this study offer a direction to reduce energy consumption and related costs and potential future research avenues on this topic. Further, the findings also help policymakers develop a hybrid work model for the post-COVID-19 pandemic.
  • Item
    Thumbnail Image
    Heat Pump: An enabling technology in the future low carbon energy systems?
    Aye, L ( 2022-04-06)
    Invited Talk: Presented at the International Symposium on Energy Management and Sustainability (ISEMAS) 2022, 5-9 April 2022
  • Item
    Thumbnail Image
    Solar Boosted Heat Pump (SBHP) in Australia: A lesson learned
    Aye, L ( 2022-03-09)
    Presented at the workshop on the IEA EBC new Annex proposal “Evaluation and Demonstration of Actual Energy Efficiency of Heat Pumps in Buildings” 8-9 March 2022
  • Item
    No Preview Available
    Effects of learning curve models on onshore wind and solar PV cost developments in the USA
    Castrejon-Campos, O ; Aye, L ; Hui, FKP (PERGAMON-ELSEVIER SCIENCE LTD, 2022-05)
    Technological innovation planning for developing and deploying clean energy technologies plays a key role in reducing greenhouse gas emissions and transition to a low-carbon future. Learning curve theory has been adopted as a common framework for exploring the relationship between endogenous technological learning and technology cost developments. The aim of this article is to analyse the effects of selecting different learning curve approaches (i.e. model formulations) to describe energy technology cost changes over time. Experience and knowledge stock are chosen as the sources of learning to be considered. A new definition of experience was developed to account for the interaction between global and local experience. The new definition of experience also accounts for learning sub-processes (i.e. learning-by-doing, learning-by-using, and experience spillovers) to estimate total experience gained through technology deployment. An integrative model is developed for estimating the effects of learning-by-deploying and learning-by-researching on cost developments for onshore wind and solar PV in the USA. Publicly available data from government departments and organisations were utilised. It was found that technology cost developments are better explained when: (1) experience is defined as a function of global and local experience; (2) knowledge stock is also considered in the model formulation; and (3) technological processes affect only a fraction of the total capital cost. The findings suggested that the application of learning rates for model-based energy planning is context-dependent and how technological factors are explicitly defined may have significantly different policy implications (i.e. different technology costs predictions based on alternative model formulations).
  • Item
    No Preview Available
    Dataset on effects of learning curve models on onshore wind and solar PV cost developments in the USA (Version 2)
    Castrejon Campos, O ; Aye, L ; Hui, KP ( 2022-02-21)
    This dataset includes input data to estimate learning-by-deploying (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States of America (USA). Using different learning curve approaches the simulated technological-based cost developments are also presented. Coefficient of determination (R squared) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technological-based costs.