Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Infrared thermography detection of delamination in bottom of concrete bridge decks
    Raja, BNK ; Miramini, S ; Duffield, C ; Sofi, M ; Zhang, L (JOHN WILEY & SONS LTD, 2022-03)
    Infrared thermography (IRT) has been widely used in detecting the subsurface delamination of bridge deck. However, IRT inspection on delamination zones of the bridge deck which have limited exposure to direct solar radiation (e.g., the bottom surface of the bridge deck) is rather challenging due to the relatively low thermal contrast (∆T) development in these zones. Therefore, the purpose of this study is to conduct a series of experimental studies in conjunction with numerical modeling for investigating the effectiveness of IRT in delamination detection of bridge deck components which are normally not exposed to direct solar radiation. Specially, the effects of different environmental conditions, thickness of bridge deck, and defect characteristics on the absolute thermal contrast (∆T) development were systematically investigated. The results show that IRT can effectively detect the subsurface delamination of concrete bridge deck located in regions that are not exposed to the direct solar radiation. In addition, the development of detectable thermal contrast (>0.5°C) is much dependent on the rate of change in ambient temperature with a suitable detection period between 8 am and 4 pm. Furthermore, it shows that the value of ∆T increases with the increase of bridge deck thickness and delamination size.
  • Item
    Thumbnail Image
    The influence of ambient environmental conditions in detecting bridge concrete deck delamination using infrared thermography (IRT)
    Raja, BNK ; Miramini, S ; Duffield, C ; Sofi, M ; Mendis, P ; Zhang, L (Wiley, 2020-04-01)
    Delamination is a serious form of deterioration in concrete bridge decks. Infrared thermography (IRT) is an advance non‐destructive testing method for concrete bridge deck delamination detection by capturing the absolute thermal contrast (ΔT) on the concrete surface caused by the disruption in heat flow due to subsurface defects. However, as the ambient environmental conditions (e.g. wind velocity and solar radiation) of a bridge could significantly affect the measurement outcomes of IRT, the optimal times for infrared data collection are still unclear. In this paper, a series of experimental and numerical studies were carried out to investigate the effects of the rate of heat flux and wind velocity on ΔT on the surface of bridge decks with the aim of identifying the optimal inspection times for different geometry characteristics of delamination (i.e. size and depth). The developed model is firstly validated by the experimental data and then a series of parametric studies were carried out. The result shows that the heat flux rate plays an important role in the development of ΔT on concrete surface, especially for a relatively shallow and small size delamination. However, the influence of heat flux rate gradually diminishes with the increase in size and depth of delamination. In addition, it demonstrates that there is a positive linear correlation between the total heat energy (external irradiation) and square of the delamination depth. The current research represents an important step towards the development of an effective and efficient way for defect detection using IRT.
  • Item
    Thumbnail Image
    Long-Term Performance of Trestle Bridges: Case Study of an Indonesian Marine Port Structure
    Oktavianus, Y ; Sofi, M ; Lumantarna, E ; Kusuma, G ; Duffield, C (MDPI AG, 2020-05-19)
    A precast reinforced concrete (RC) T-beam located in seaport Terminal Peti Kemas (TPS) Surabaya built in 1984 is used as a case study to test the accuracy of non-destructive test techniques against more traditional bridge evaluation tools. This bridge is mainly used to connect the berth in Lamong gulf and the port in Java Island for the logistic purposes. The bridge was retrofitted 26 years into its life by adding two strips of carbon fiber reinforced polymer (CFRP) due to excessive cracks observed in the beams. Non-destructive field measurements were compared against a detailed finite element analysis of the structure to predict the performance of the girder in terms of deflection and moment capacity before and after the retrofitting work. The analysis was also used to predict the long-term deflections of the structure due to creep, crack distribution, and the ultimate moment capacity of the individual girder. Moreover, the finite element analysis was used to predict the deflection behavior of the overall bridge due to vehicle loading. Good agreement was obtained between the field measurement and the analytical study. A new service life of the structure considering the corrosion and new vehicle demand is carried out based on field measurement using non-destructive testing. Not only are the specific results beneficial for the Indonesian port authority as the stakeholder to manage this structure, but the approach detailed also paves the way for more efficient evaluation of bridges more generally over their service life.