Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
    Fowler, K ; Peel, M ; Saft, M ; Peterson, TJ ; Western, A ; Band, L ; Petheram, C ; Dharmadi, S ; Tan, KS ; Zhang, L ; Lane, P ; Kiem, A ; Marshall, L ; Griebel, A ; Medlyn, BE ; Ryu, D ; Bonotto, G ; Wasko, C ; Ukkola, A ; Stephens, C ; Frost, A ; Weligamage, HG ; Saco, P ; Zheng, H ; Chiew, F ; Daly, E ; Walker, G ; Vervoort, RW ; Hughes, J ; Trotter, L ; Neal, B ; Cartwright, I ; Nathan, R (COPERNICUS GESELLSCHAFT MBH, 2022-12-06)
    Abstract. The Millennium Drought lasted more than a decade and is notable for causing persistent shifts in the relationship between rainfall and runoff in many southeastern Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents and evaluates a range of hypothesised process explanations of flow response to the Millennium Drought. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (e.g. why was the Millennium Drought different to previous droughts?) and spatially (e.g. why did rainfall–runoff relationships shift in some catchments but not in others?). Thus, the strength of this work is a large-scale assessment of hydrologic changes and potential drivers. Of 24 hypotheses, 3 are considered plausible, 10 are considered inconsistent with evidence, and 11 are in a category in between, whereby they are plausible yet with reservations (e.g. applicable in some catchments but not others). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including declines in groundwater storage, altered recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and harvesting of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in the understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change.
  • Item
    Thumbnail Image
    Hydrological Shifts Threaten Water Resources
    Fowler, K ; Peel, M ; Saft, M ; Nathan, R ; Horne, A ; Wilby, R ; McCutcheon, C ; Peterson, T (AMER GEOPHYSICAL UNION, 2022-08)
    Abstract Recent shifts in the hydrological behavior of natural watersheds suggest acute challenges for water planning under climate change. Usually triggered by a multi‐year drought, these shifts involve a tendency for less annual streamflow for a given annual precipitation, and this behavior has now been reported on multiple continents. Future drying under climate change may induce similar unexpected hydrological responses, and this commentary discusses the implications for water planning and management. Commonly used hydrological models poorly represent these shifts in behavior and cannot be relied upon to anticipate future changes. Thus, their use may result in underestimation of hydroclimatic risk and exposure to “surprise” reductions in water supply, relative to projections. The onus is now on hydrologists to determine the underlying causes of shifting behavior and incorporate more dynamic realism into operational models.
  • Item
    No Preview Available
    Integrated framework for rapid climate stress testing on a monthly timestep
    Fowler, K ; Ballis, N ; Horne, A ; John, A ; Nathan, R ; Peel, M (ELSEVIER SCI LTD, 2022-04)
  • Item
    Thumbnail Image
    Robust Climate Change Adaptation for Environmental Flows in the Goulburn River, Australia
    John, A ; Horne, A ; Nathan, R ; Fowler, K ; Webb, JA ; Stewardson, M (FRONTIERS MEDIA SA, 2021-12-06)
    Climate change presents severe risks for the implementation and success of environmental flows worldwide. Current environmental flow assessments tend to assume climate stationarity, so there is an urgent need for robust environmental flow programs that allow adaptation to changing flow regimes due to climate change. Designing and implementing robust environmental flow programs means ensuring environmental objectives are achieved under a range of uncertain, but plausible climate futures. We apply stress testing concepts previously adopted in water supply management to environmental flows at a catchment scale. We do this by exploring vulnerabilities in different river management metrics for current environmental flow arrangements in the Goulburn River, Australia, under non-stationary climatic conditions. Given the limitations of current environmental flows in supporting ecological outcomes under climate change, we tested three different adaptation options individually and in combination. Stress testing adaptation results showed that increasing environmental entitlements yielded the largest benefits in drier climate futures, whereas relaxing river capacity constraints (allowing more targeted delivery of environmental water) offered more benefits for current and wetter climates. Combining both these options led to greater than additive improvements in allocation reliability and reductions in environmental water shortfalls, and these improvements were achieved across a wider range of climatic conditions than possible with either of the individual options. However, adaptation may present additional risks to some ecological outcomes for wetter climates. Ultimately, there was a degree of plausible climate change beyond which none of the adaptation options considered were effective at improving ecological outcomes. This study demonstrates an important step for environmental flow assessments: evaluating the feasibility of environmental outcomes under climate change, and the intervention options that prove most robust under an uncertain future.
  • Item
    Thumbnail Image
    Nonstationary Runoff Responses Can Interact With Climate Change to Increase Severe Outcomes for Freshwater Ecology
    John, A ; Nathan, R ; Horne, A ; Fowler, K ; Stewardson, M (AMER GEOPHYSICAL UNION, 2022-02)
    Abstract Climate change is projected to impact multiple components of the flow regime. However, changes in some ecologically important aspects of flow seasonality and variability are not well‐represented by global climate models. We used a stress testing method and global sensitivity analysis to investigate whether interactions between five different, but plausible, change “dimensions” (hydroclimatic variables or relationships) led to worse ecological outcomes than individual changes. The five dimensions include changes in long‐term average rainfall and temperature, low‐frequency variability of rainfall, seasonality of rainfall, and the rainfall‐runoff relationship. Our case study involved regulated and unregulated sections of the Goulburn River, Australia. We found that four different modeled ecological outcomes (condition of small bodied fish, large bodied fish, in‐channel vegetation, and floodplain vegetation) are most sensitive to changes in long‐term average rainfall. Sensitivity to changes in rainfall seasonality depends on river characteristics and appears to be heavily dampened by regulation and actively managed environmental water. Changes to the rainfall‐runoff relationship (which may be triggered by long‐term drying) were found to greatly influence ecological outcomes, but remain poorly understood. However, when considering the worst outcomes that are likely to present severe threats to ecological survival, all five dimensions were significant. These worst outcomes only manifest under certain combinations of changes with interactive effects. These joint interactions have implications for climate risk assessments that do not consider multiple dimensions of change, particularly those aimed at evaluating and mitigating severe threats or extinction probability.
  • Item
    Thumbnail Image
    Advances in assessing the impact of hillside farm dams on streamflow
    Fowler, K ; Morden, R ; Lowe, L ; Nathan, R (TAYLOR & FRANCIS AS, 2015)