Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
    Fowler, K ; Peel, M ; Saft, M ; Peterson, TJ ; Western, A ; Band, L ; Petheram, C ; Dharmadi, S ; Tan, KS ; Zhang, L ; Lane, P ; Kiem, A ; Marshall, L ; Griebel, A ; Medlyn, BE ; Ryu, D ; Bonotto, G ; Wasko, C ; Ukkola, A ; Stephens, C ; Frost, A ; Weligamage, HG ; Saco, P ; Zheng, H ; Chiew, F ; Daly, E ; Walker, G ; Vervoort, RW ; Hughes, J ; Trotter, L ; Neal, B ; Cartwright, I ; Nathan, R (COPERNICUS GESELLSCHAFT MBH, 2022-12-06)
    Abstract. The Millennium Drought lasted more than a decade and is notable for causing persistent shifts in the relationship between rainfall and runoff in many southeastern Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents and evaluates a range of hypothesised process explanations of flow response to the Millennium Drought. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (e.g. why was the Millennium Drought different to previous droughts?) and spatially (e.g. why did rainfall–runoff relationships shift in some catchments but not in others?). Thus, the strength of this work is a large-scale assessment of hydrologic changes and potential drivers. Of 24 hypotheses, 3 are considered plausible, 10 are considered inconsistent with evidence, and 11 are in a category in between, whereby they are plausible yet with reservations (e.g. applicable in some catchments but not others). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including declines in groundwater storage, altered recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and harvesting of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in the understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change.
  • Item
    Thumbnail Image
    Not Just Another Assessment Method: Reimagining Environmental Flows Assessments in the Face of Uncertainty
    Horne, AC ; Webb, JA ; Mussehl, M ; John, A ; Rumpff, L ; Fowler, K ; Lovell, D ; Poff, L (FRONTIERS MEDIA SA, 2022-05-10)
    The numerous environmental flows assessment methods that exist typically assume a stationary climate. Adaptive management is commonly put forward as the preferred approach for managing uncertainty and change in environmental flows. However, we contend that a simple adaptive management loop falls short of meeting the challenges posed by climate change. Rather, a fundamental rethink is required to ensure both the structure of environmental flows assessments, along with each individual technical element, actively acknowledges the multiple dimensions of change, variability and complexity in socio-ecological systems. This paper outlines how environmental flow assessments can explicitly address the uncertainty and change inherent in adaptively managing multiple values for management of environmental flows. While non-stationarity and uncertainty are well recognised in the climate literature, these have not been addressed within the structure of environmental flows methodologies. Here, we present an environmental flow assessment that is structured to explicitly consider future change and uncertainty in climate and socio-ecological values, by examining scenarios using ecological models. The environmental flow assessment methodology further supports adaptive management through the intentional integration of participatory approaches and the inclusion of diverse stakeholders. We present a case study to demonstrate the feasibility of this approach, highlighting how this methodology facilitates adaptive management. Rethinking our approach to environmental flows assessments is an important step in ensuring that environmental flows continue to work effectively as a management tool under climate change.
  • Item
    Thumbnail Image
    Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping
    Bonotto, G ; Peterson, TJ ; Fowler, K ; Western, AW (AMER GEOPHYSICAL UNION, 2022-08)
    Abstract Groundwater (GW) is commonly conceptualized as causally linked to streamflow (SF). However, confirming where and how it occurs is challenging given the expense of experimental field monitoring. Therefore, hydrological modeling and water management often rely on expert knowledge to draw causality between SF and GW. This paper investigates the potential of convergent cross‐mapping (CCM) to identify causal interactions between SF and GW head. Widely used in ecology, CCM is a nonparametric method to identify causality in nonlinear dynamic systems. To apply CCM between variables the only required inputs are time‐series data (stream gauge and bore), so it may be an attractive alternative or complement to expensive field‐based studies of causality. Three upland catchments across different hydrogeologic settings and climatic conditions in Victoria, Australia, are adopted as case studies. The outputs of the method seem to largely agree with a priori perceptual understanding of the study areas and offered additional insights about hydrological processes. For instance, it suggested weaker SF‐GW interactions during and after the Millennium Drought than in the previous wet periods. However, we show that CCM limitations around seasonality, data sampling frequency, and long‐term trends could impact the variability and significance of causal links. Hence, care must be taken while physically interpreting the causal links suggested by CCM. Overall, this study shows that CCM can provide valuable causal information from common hydrological time‐series, which is relevant to a wide range of applications, but it should be used and interpreted with care and future research is needed.
  • Item
    Thumbnail Image
    Hydrological Shifts Threaten Water Resources
    Fowler, K ; Peel, M ; Saft, M ; Nathan, R ; Horne, A ; Wilby, R ; McCutcheon, C ; Peterson, T (AMER GEOPHYSICAL UNION, 2022-08)
    Abstract Recent shifts in the hydrological behavior of natural watersheds suggest acute challenges for water planning under climate change. Usually triggered by a multi‐year drought, these shifts involve a tendency for less annual streamflow for a given annual precipitation, and this behavior has now been reported on multiple continents. Future drying under climate change may induce similar unexpected hydrological responses, and this commentary discusses the implications for water planning and management. Commonly used hydrological models poorly represent these shifts in behavior and cannot be relied upon to anticipate future changes. Thus, their use may result in underestimation of hydroclimatic risk and exposure to “surprise” reductions in water supply, relative to projections. The onus is now on hydrologists to determine the underlying causes of shifting behavior and incorporate more dynamic realism into operational models.
  • Item
    Thumbnail Image
    Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
    Trotter, L ; Knoben, WJM ; Fowler, KJA ; Saft, M ; Peel, MC (COPERNICUS GESELLSCHAFT MBH, 2022-08-26)
    Abstract. The Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) is a flexible modelling framework reproducing the behaviour of 47 established hydrological models. This toolbox can be used to calibrate and run models in a user-friendly and consistent way and is designed to facilitate the sharing of model code for reproducibility and to support intercomparison between hydrological models. Additionally, it allows users to create or modify models using components of existing ones. We present a new MARRMoT release (v2.1) designed for improved speed and ease of use. While improved computational efficiency was the main driver for this redevelopment, MARRMoT v2.1 also succeeds in drastically reducing the verbosity and repetitiveness of the code, which improves readability and facilitates debugging. The process to create new models or modify existing ones within the toolbox is also simplified in this version, making MARRMoT v2.1 accessible for researchers and practitioners at all levels of expertise. These improvements were achieved by implementing an object-oriented structure and aggregating all common model operations into a single class definition from which all models inherit. The new modelling framework maintains and improves on several good practices built into the original MARRMoT and includes a number of new features such as the possibility of retrieving more output in different formats that simplifies troubleshooting, and a new functionality that simplifies the calibration process. We compare outputs of 36 of the models in the framework to an earlier published analysis and demonstrate that MARRMoT v2.1 is highly consistent with the previous version of MARRMoT (v1.4), while achieving a 3.6-fold improvement in runtime on average. The new version of the toolbox and user manual, including several workflow examples for common application, are available from GitHub (https://github.com/wknoben/MARRMoT, last access: 12 May 2022; https://doi.org/10.5281/zenodo.6484372, Trotter and Knoben, 2022b).
  • Item
    Thumbnail Image
    Towards Understanding Evapotranspiration Shifts Under a Drying Climate
    Gardiya Weligamage, H ; Fowler, K ; Peterson, T ; Saft, M ; Ryu, D ; Peel, M (Copernicus, 2022-03-28)
    Around 60 percent of terrestrial precipitation on the global average transforms into evapotranspiration. However, reliable estimation of actual evapotranspiration (AET) is challenging as it depends on multiple climatic and biophysical factors. Despite developments such as remotely sensed AET products, AET responses to prolonged drought is still poorly understood. Therefore, this study focuses on understanding long-term changes and variability of AET prior to and during the Millennium Drought in Victoria, Australia. We also investigate the capability of commonly used rainfall-runoff models to simulate AET under multiyear droughts. Therefore, we employ simple sensitivity analysis to examine four different water balance approaches between pre-drought and drought periods in six different study catchments in Victoria. The first water balance approach is the simplest long-term water balance approach, partitioning long-term precipitation into evapotranspiration and runoff. The second water balance approach adopts a long-term change in storage to the water balance during the Millennium Drought by employing regional-scale change in GRACE estimates derived from Fowler et al. (2020). The third and fourth water balances are based on simulations from SIMHYD and SACRAMENTO. Surprisingly, the adoption of long-term change in storage during the Millennium Drought indicates that the annual rates of pre-drought AET were largely maintained throughout the drought; i.e. the rate was relatively constant with time. This suggests that AET gets priority over streamflow following a drying shift in precipitation partitioning; resulting in a relatively constant AET under multiyear drought. In contrast, the rainfall-runoff models underestimated AET during the drought compared to both water balance approaches. These results broadly acknowledge the need for model improvements to provide more realistic AET estimates under future drying climates and provide a new perspective on recent hydrological phenomena such as changing rainfall-runoff relationships in these regions. Furthermore, this sensitivity analysis was augmented and confirmed by a regional-scale water balance approach.
  • Item
    Thumbnail Image
    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
    Fowler, K ; Peel, M ; Saft, M ; Peterson, T ; Western, A ; Band, L ; Petheram, C ; Dharmadi, S ; Tan, KS ; Zhang, L ; Lane, P ; Kiem, A ; Marshall, L ; Griebel, A ; Medlyn, B ; Ryu, D ; Bonotto, G ; Wasko, C ; Ukkola, A ; Stephens, C ; Frost, A ; Weligamage, H ; Saco, P ; Zheng, H ; Chiew, F ; Daly, E ; Walker, G ; Vervoort, RW ; Hughes, J ; Trotter, L ; Neal, B ; Cartwright, I ; Nathan, R ( 2022-04-20)
    The Millennium Drought lasted more than a decade, and is notable for causing persistent shifts in the relationship between rainfall and runoff in many south-east Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents a range of possible process explanations of flow response, and then evaluates these hypotheses against available evidence. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (eg. why was the Millennium Drought different to previous droughts?) and spatially (eg. why did rainfall-runoff relationships shift in some catchments but not in others?). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including: declines in groundwater storage, reduced recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and interception of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change.
  • Item
    Thumbnail Image
    On the relationship between the variability of catchment hydroclimate and physiography, and the uncertainty of runoff generation hypotheses
    Khatami, S ; Fowler, K ; Peel, M ; Peterson, TP ; Western, A ; Kalantari, Z (Copernicus Publications, 2021-03-04)
    <p>Question #20 of the UPH aspires to disentangle and reduce model prediction uncertainty. One feasible approach is to first formulate the relationship between variability (of real-world hydrological processes and catchment characteristics) and uncertainty (of model components and variables), which links the UPH theme of “modelling methods” to “time variability and change” and “space variability and scaling”. Building on this premise, we explored the relationship between runoff generation hypotheses, derived from a large ensemble of catchment model simulations, and catchment characteristics (physiographic, climatic, and streamflow response characteristics) across a large sample of 221 Australian catchments. Using ensembles of 10<sup>6 </sup>runs of SIMHYD model for each catchment, runoff generation hypotheses were formulated based on the interaction of 3 runoff generating fluxes of SIMHYD, namely intensity-based, wetness-based, and slow responses. The hypotheses were derived from model runs with acceptable performance and sufficient parameter sampling. For model performance acceptability, we benchmarked Kling-Gupta Efficiency (KGE) skill score against the calendar day average observed flow, a catchment-specific and more informative benchmark than the conventional observed flow mean. The relative parameter sampling sufficiency was also defined based on the comparative efficacy of two common model parameterisation routines of Latin Hypercube Sampling and Shuffled Complex Evolution for each catchment. Across 186 catchments with acceptable catchment models, we examined the association of uncertain runoff generation hypotheses (i.e. ensemble of modeled runoff fluxes) with 22 catchment attributes. We used the Flux Mapping method (https://doi.org/10.1029/2018WR023750) to characterise the uncertainty of runoff generation hypotheses, and a range of daily and annual summary statistics to characterise catchment attributes. Among the metrics used, Spearman rank correlation coefficient (R<sub>s</sub>) was the most informative metric to capture the functional connectivity of catchment attributes with the internal dynamics of model runoff fluxes, compared to linear Pearson correlation and distance correlation coefficients. We found that streamflow characteristics generally have the most important influence on runoff generation hypotheses, followed by climate and then physiographic attributes. Particularly, daily flow coefficient of variability (Qcv) and skewness (Q Skewness), followed by the same summary statistics of precipitation (Pcv and P Skewness), were most important. These four attributes are strongly correlated with one another, and represent the dynamics of the rainfall-runoff signal within a catchment system. A higher Pcv denotes a higher day-to-day variability in rainfall on the catchment, responded by a higher Qcv flow response. A higher variability in rainfall propagates through the catchment model and translates into a higher degree of equifinality in model runoff fluxes, which implies larger uncertainties of runoff generation hypotheses at catchment scale, and hence a greater challenge for reliable/realistic simulation and prediction of streamflow.</p>
  • Item
    No Preview Available
    Integrated framework for rapid climate stress testing on a monthly timestep
    Fowler, K ; Ballis, N ; Horne, A ; John, A ; Nathan, R ; Peel, M (ELSEVIER SCI LTD, 2022-04)
  • Item
    Thumbnail Image
    Robust Climate Change Adaptation for Environmental Flows in the Goulburn River, Australia
    John, A ; Horne, A ; Nathan, R ; Fowler, K ; Webb, JA ; Stewardson, M (FRONTIERS MEDIA SA, 2021-12-06)
    Climate change presents severe risks for the implementation and success of environmental flows worldwide. Current environmental flow assessments tend to assume climate stationarity, so there is an urgent need for robust environmental flow programs that allow adaptation to changing flow regimes due to climate change. Designing and implementing robust environmental flow programs means ensuring environmental objectives are achieved under a range of uncertain, but plausible climate futures. We apply stress testing concepts previously adopted in water supply management to environmental flows at a catchment scale. We do this by exploring vulnerabilities in different river management metrics for current environmental flow arrangements in the Goulburn River, Australia, under non-stationary climatic conditions. Given the limitations of current environmental flows in supporting ecological outcomes under climate change, we tested three different adaptation options individually and in combination. Stress testing adaptation results showed that increasing environmental entitlements yielded the largest benefits in drier climate futures, whereas relaxing river capacity constraints (allowing more targeted delivery of environmental water) offered more benefits for current and wetter climates. Combining both these options led to greater than additive improvements in allocation reliability and reductions in environmental water shortfalls, and these improvements were achieved across a wider range of climatic conditions than possible with either of the individual options. However, adaptation may present additional risks to some ecological outcomes for wetter climates. Ultimately, there was a degree of plausible climate change beyond which none of the adaptation options considered were effective at improving ecological outcomes. This study demonstrates an important step for environmental flow assessments: evaluating the feasibility of environmental outcomes under climate change, and the intervention options that prove most robust under an uncertain future.