Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Key factors influencing differences in stream water quality across space
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Waters, D ; Leahy, P ; Wilson, P ; Western, AW (WILEY, 2018-01-01)
    Globally, many rivers are experiencing declining water quality, for example, with altered levels of sediments, salts, and nutrients. Effective water quality management requires a sound understanding of how and why water quality differs across space, both within and between river catchments. Land cover, land use, land management, atmospheric deposition, geology and soil type, climate, topography, and catchment hydrology are the key features of a catchment that affect: (1) the amount of suspended sediment, nutrient, and salt concentrations in catchments (i.e., the source), (2) the mobilization ,and (3) the delivery of these constituents to receiving waters. There are, however, complexities in the relationship between landscape characteristics and stream water quality. The strength of this relationship can be influenced by the distance and spatial arrangement of constituent sources within the catchment, cross correlations between landscape characteristics, and seasonality. A knowledge gap that should be addressed in future studies is that of interactions and cross correlations between landscape characteristics. There is currently limited understanding of how the relationships between landscape characteristics and water quality responses can shift based on the other characteristics of the catchment. Understanding the many forces driving stream water quality and the complexities and interactions in these forces is necessary for the development of successful water quality management strategies. This knowledge could be used to develop predictive models, which would aid in forecasting of riverine water quality. WIREs Water 2018, 5:e1260. doi: 10.1002/wat2.1260 This article is categorized under: Science of Water > Hydrological Processes Science of Water > Water Quality
  • Item
    Thumbnail Image
    Escherichia coli survival and transfer in estuarine bed sediments
    Schang, C ; Lintern, A ; Cook, PLM ; Rooney, G ; Coleman, R ; Murphy, HM ; Deletic, A ; McCarthy, D (WILEY, 2018-07)
    Abstract Bed sediment resuspension is a potential source of faecal microorganisms in the water column of estuaries. As such, it is important to identify the survival of faecal microorganisms in these bed sediments and understand how bed sediment resuspension impacts the quality of estuarine waters. This study explores the effect of bed sediment resuspension on Escherichia coli concentrations in the water column and the persistence of E. coli in the water column and bed sediments of the Yarra River estuary in South‐Eastern Australia. Using sediment cores, we identified that the resuspension of both surficial sediments (e.g., by tidal movements) and deeper bed sediments (e.g., by large storm events) can increase E. coli concentrations in the water column by up to 20 times in estuaries in oceanic climates. Bed sediment resuspension can result in increased E. coli concentrations in the water column even up to 24 days after E. coli first enters the estuarine water. This study demonstrates that faecal microorganisms, such as E. coli, can persist for extended periods in estuarine bed sediments, which may then be re‐entrained into the water column via recreational activities, high flow events, or tidal fluctuations. If the survival and resuspension processes observed here hold true for pathogenic microorganisms, the resuspension of bed sediments may indeed represent an increased public health risk.
  • Item
    Thumbnail Image
    A web-based interface to visualize and model spatio-temporal variability of stream water quality
    Guo, D ; Lintern, A ; Webb, J ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Waters, D ; Watson, M ; Wilson, P ; Western, A ; Vietz, G ; Rutherfurd, I (River Basement Management Society, 2018)
    Understanding the spatio-temporal variability in stream water quality is critical for designing effective water quality management strategies. To facilitate this, we developed a web-based interface to visualize and model the spatio-temporal variability of stream water quality in Victoria. We used a dataset of long-term monthly water quality measurements from 102 monitoring sites in Victoria, focusing on six water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjedahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The interface models spatio-temporal variability in water quality via a Bayesian hierarchical modelling framework, and produces summaries of (1) the key driving factors of spatio-temporal variability and (2) model performance assessed by multiple metrics. Additional features include predicting the time-averaged mean concentration at an un-sampled site, and testing the impact of land-use changes on the mean concentration at existing sites. This tool can be very useful in supporting the decision-making processes of catchment managers in (1) understanding the key drivers of changes in water quality and (2) designing water quality mitigation and restoration strategies.
  • Item
    Thumbnail Image
    What Are the Key Catchment Characteristics Affecting Spatial Differences in Riverine Water Quality?
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Waters, D ; Leahy, P ; Bende-Michl, U ; Western, AW (AMER GEOPHYSICAL UNION, 2018-10)
    Abstract This study uses water‐quality data collected over 20 years, from 102 predominantly rural sites across Victoria, Australia, to further our understanding of spatial variability in riverine water quality. We focus on concentrations of total suspended solids, total phosphorus, filterable reactive phosphorus, total Kjeldahl nitrogen, nitrate/nitrite (NOx), and electrical conductivity. We used an exhaustive search approach to identify the linear models that best link catchment characteristics to time‐averaged constituent concentrations. We ran additional analyses to (1) assess the performance of these models under drought conditions, and (2) understand the key drivers of site‐level variability (standard deviations) of constituent concentrations. Natural catchment characteristics appear to have a greater effect on spatial differences in average constituent concentrations. Performance of the statistical models of time‐averaged constituent concentrations varied, and spatial variability in mean electrical conductivity levels could be more readily explained by catchment characteristics compared to more reactive nutrients. Notwithstanding, the models performed relatively well under varying hydrologic conditions for most constituents. As such, these models provide an insight into the key factors affecting spatial variability in average stream water‐quality conditions. We also identified that hydrologic, climatic, and topographic characteristics of the catchment helped explain the spatial variability in temporal changes in constituents. After calibration and validation, these models of both average water quality and variability in water quality could be used to forecast stream water‐quality responses to future land use, climate, or soil and land management changes.
  • Item
    Thumbnail Image
    Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Waters, D ; Guo, D ; Western, AW (PERGAMON-ELSEVIER SCIENCE LTD, 2018-12)
    Water quality monitoring is important to assess changes in inland and coastal water quality. The focus of this study was to improve understanding of the spatial component of spatial-temporal water quality dynamics, particularly the spatial variability in water quality and the association between this spatial variability and catchment characteristics. A dataset of nine water quality constituents collected from 32 monitoring sites over a 11-year period (2006-2016), across the Great Barrier Reef catchments (Queensland, Australia), were evaluated by multivariate techniques. Two clusters were identified, which were strongly associated with catchment characteristics. A two-step Principal Component Analysis/Factor Analysis revealed four groupings of constituents with similar spatial pattern and allowed the key catchment characteristics affecting water quality to be determined. These findings provide a more nuanced view of spatial variations in water quality compared with previous understanding and an improved basis for water quality management to protect nearshore marine ecosystem.
  • Item
    Thumbnail Image
    Integrated modelling of spatio-temporal variability in stream water quality across victorian catchments
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Western, AW (Engineers Australia, 2018-01-01)
    Degraded water quality in rivers and streams can have large economical, societal and ecological impacts. Stream water quality can be highly variable both over space and time, so understanding and modelling these spatio-temporal variabilities is critical to developing management and mitigation strategies to improve riverine water quality. However, there is currently limited capacity to model stream water quality due to the lack of understanding of the key factors driving spatio-temporal variability in water quality. To address this, a Bayesian hierarchical statistical model has been developed to describe the spatio-temporal variability in stream water quality across multiple catchments in the state of Victoria, Australia. We used monthly water quality monitoring data collected at 102 sites over 20 years. The modelling focused on three key water quality indicators: total suspended solids (TSS), nitrate-nitrite (NOx) and salinity (EC). It was found that both human-influenced catchment characteristics (land use) and other natural characteristics such as climate or topography are important drivers of spatial variabilities. The key drivers of temporal variability are changes in streamflow, climate and vegetation cover. These key drivers have been integrated into a spatio-temporal modelling framwork. These models can be applied at different spatial and temporal scales, and explain a reasonable proportion of spatio-temporal variation in the different water quality constituents. The extension and adaption of these models is currently underway to create an operational tool to forecast stream water quality responses to potential land use and climatic changes.
  • Item
    Thumbnail Image
    Using a data-driven approach to understand the interaction between catchment characteristics and water quality responses
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Wilson, P ; Western, A ; Vietz, G ; Flatley, A ; Rutherfurd, I (River Basin Management Society, 2016)